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We exhibit a phase transition from a rough high-temperature phase to a rigid 
(localized) low-temperature phase in the discrete Gausgian chain with 1/r 2 inter- 
action energy. This transition is related to a localization transition in the ground 
state for a quantum mechanical particle in a one-dimensional periodic potential, 
coupled to quantum 1/f noise. 
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1. I N T R O D U C T I O N  

1.1. The Ma in  Results 

In this paper  we rigorously establish a transition from a rough, delocalized 
high-temperature phase to a rigid, localized low-temperature phase in the 
discrete Gaussian chain with 1/r 2 interaction energy. The Hamil tonian of 
the discrete Gaussian chain is chosen to be 

1 HDG(n) = ~ ~ g(i-- j)(ni-- nj) 2 (1.1) 
t,d 

where i and j range over E, ni ~ Z is a height variable (e.g., the height of 
an interface over i, or  the difference of  the position of a particle to its 
equilibrium position), and g ( i - j )  is a coupling function. We assume that 

g(r) ~ r -a, ~ = 2, as r -* oc (1.2) 
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For c~ > 2, the system with Hamiltonian (1.1) is expected to always be in 
the rough phase, i.e., there is a constant C~, with Cp ~ 1//3, for /3 small, 
such that 

( ( n i - n j ) Z ) ~ C p  Li-jl ~, 7 - - r a i n ( e - 2 ,  1) (1.3) 

as [i - j l  ~oo,  while for ~ < 2 ,  a rigid phase with (C} a //-dependent 
constant) 

(n~)~<C'~ (1.4) 

appears to persist, for all /3. In (1.3) and (1.4), ( ( . ) )~  denotes the equi- 
librium state determined by H DG with 0-boundary conditions at inverse 
temperature /3. Behavior (1.3) is related to behavior (1.4) by a duality 
transformation, so that (for suitably chosen boundary conditions) it is 
enough to prove (1.3), say. This is not a particularly easy task if one wants 
to establish (1.3) for all values of/3. [A Peierls argument--see Section 3--  
can be used to prove (1.4), for large enough values of/3. We expect that 
(1.4) could be proven directly, for smaller values of/3, by using a finite, but 
/3-dependent sequence of renormalization transformations, followed by a 
Peierls argument.] 

In order to explain why we do not expect to observe a phase transition 
in the discrete Gaussian chain for interactions with g(r) -,~ r-=, ~ r 2, while, 
for ~ = 2, a transition will be proven to exist, we shall now discuss a 
heuristic energy-entropy argument. We first discuss the models with ~ > 2. 
(The models with ~ < 2 can be understood in terms of the models with 
~ > 2  by using a duality transformation. ~ We shall first estimate how 
much energy needs to be paid for the interface described by the discrete 
Gaussian chain, with nj interpreted as the height of the interface at site j, 
to reach a "macroscopic" height. From the form (1.1) of the Hamiltonian 
we see that configurations of height variables of comparatively small energy 
are those which exhibit only unit jumps. More precisely, for the system 
confined to the interval A = I - L ,  L]  ~ Y with zero boundary conditions, 
the relevant configurations can be described as follows: A configuration n 
of height variables is said to have unit jumps only iff there is a partition 
{I~}~= x,..., x of A into 2K+ 1 disjoint intervals with the property that 

ni=N~, for all i~Ix (1.5) 

for integers N~ such that ]N+Kt < 1, and 

IN~ - N~_+ 11 = 1 (1.6) 

Such "staircase" configurations n({I;~}) can reach a maximal height K. We 
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shall now choose K, the integers N~., and the lengths II~.l of the intervals 
I~., for 2 = - K ,  - K +  1,..., K. We set 

I/hl = a I~(~)1 ~/~ (1.7) 

where ~ := e -  2, ~z is an arbitrary permutation of { - K ,  - K +  1,..., 0,..., K}, 
and a > 0 is some constant. Since 

K 

E Iz~J = 2L  
Z = - - K  

it follows from (1.7) that 

Finally, we set 

K= O(L ~/(2+~) [~O(Le/2), for e small] (1.8) 

N~ = K--  12[ (1.9) 

Thanks to the rapid growth of the lengths of the intervals I~ kx) in I.kF, 
prescribed in (1.7), the energy H(n({I~.})) of a configuration n({I~.}) 
satisfying (1.7) (1.9) turns out to be bounded from above by a constant 
times the sum of interaction energies of adjacent intervals which, by (1.6) 
and (1.1), is proportional to K. Hence 

(1.1o) H(n( { I~ })) ~< bK ~ O(L ~/2) 

Clearly, the entropy of the set of configurations n({I~.}) satisfying 
(1.7) (1.9) behaves like 

S(K)~ O(Kln K) (1.11) 

Thus, entropy dominates energy at arbitrary temperatures, and we 
conclude that the maximal height nma x of the interface behaves like 

n .... = O(L~/(2+~))~ O(L(~ 2~/2) (1.12) 

for c~-2 small, at arbitrary temperature. It is well known that, for e > 3, 
n m a x = O ( ~ ) ,  at all temperatures, as follows from a central-limit 
argument. We believe that these bounds could be made rigorous with 
some hard work. 

Let us now turn to the case where e < 2 .  It follows from (1.12) by 
duality that the interface is rigid, at arbitrary temperatures. This can also 
be understood directly: We give a heuristic estimate of the probability that 
the height no at the origin is Inol = K, for some large, positive integer K. 
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For this event to occur, the origin must be in the interior of a configuration 
of jumps. Choosing these jumps to be bounded, there will be O ( K ) j u m p s  
surrounding 0. The energy of this class of configurations grows at least 
like K 3-~, while the entropy behaves like S ( x ) = O ( K I n K ) .  Thus, the 
probability PK of the event that no = K appears to behave like 

P x  < exp( - t i cK 3 - ~ + d K  In K) (1.13) 

for some finite, positive constants c and d. We conclude from (1.13) that, 
for e < 2 ,  

px--+O as K--+m (1.14) 

for arbitrary/~ > 0; hence the interface is always rigid. 
When e = 2, the behavior of the energy is given by O(Kln  K), and we 

obtain 

P x ~  e x p [ -  (tic - d)Kln  K] (1.15) 

We thus expect that there is a phase transition from a rigid to a rough 
interface at some finite, positive value of /~. This will be proven in 
Sections 3 and 4. 

Let us remark that the arguments sketched above work for zero and 
for Dirichlet boundary conditions, with the same conclusions. 

It is well known that for c~ > 2 the corresponding Ising model  has no 
phase transition. For  the Ising model with 1/r 2 interaction energy, the 
existence of a phase transition has been proven in ref. 1. The existence of 
a phase transition in the Ising model with 1 < c~ < 2 is an older result 
proven in ref. 6. Why does that not suggest that there is a phase transition 
in the corresponding discrete Gaussian chain, for 1 < e < 2? The reason is 
as follows: In order to find the behavior (1.13) for PK, we must make sure 
that the distance between consecutive jumps satisfies some growth condi- 
tion (linear growth). This is because, otherwise, the interaction energy 
between distant intervals would be too large, due to the factors ( n i - n j )  2 
appearing in the interaction energy. Without any growth conditions on the 
distances between consecutive jumps, the height variables nj will therefore 
be constrained to remain close to 0. Thus, while jumps may become 
abundant at high temperatures, as they do in the Ising model, jumps to 
large values of ]not remain unlikely, at arbitrary temperatures. 

We now turn to a summary of our results for the discrete Gaussian 
chain with e = 2. Our main result is that, for this model, 

( ( h i -  nj) 2 )~ > const~, log [ i -  Jl (1.16) 
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as l i - J l  ~ or, provided fl is small enough, while 

(n~)8 < const} (1.17) 

if fl is large enough. 
Our method of proof is as follows: Kjaer and Hilhorst (3~ have shown 

that if 

g( r )  - g * ( r )  = (r 2 -  1/4) i (1.18) 

then the model is self-dual at /? = 1, and 

1 
( ( n i -  nj)2)a= ~ ~ ~ 2  log l i - j l  (1.19) 

as l i - j l  -~ oe. From this one can deduce (1.16) forg  as in (1.18) and/~< 1 
with the help of correlation inequalities. (4) The inequalities in ref. 4 also 
permit us to extend (l.16) to coupling functions g(r ) ,  with the property 
that 

~,(k) <~ A~ ,* (k )  (1.20) 

for a l l /~<A-1 ;  see Section 4. 
The proof of (1.17) for large values of/~ is more difficult. It is based 

on an extension of the Peierls argument developed in ref. 1 for the 1/r 2 

Ising chain; see Section 3. 
Inequalities (1.16) and (1.17) clearly demonstrate the existence of a 

roughening transition in our model, as /~ is lowered. This is of some 
interest in view of the role one-dimensional spin systems with 1/r 2 inter- 
action energy have played in the development of renormalization group 
techniques. 

Our result (1.17) has an interesting consequence: Consider the correla- 
tion 

G ~ ( i - j )  ==- e x p [ -  2~2( (n i -  nj)2)~] 

and define an exponent t/(/~) by 

Gr ~ r 1 - ~(~ (1.21) 

Then, for g = g*, defined in (1.18), we have the relation 

f l t l ( f l ) + f l - l t l ( f l - 1 ) = 2 _ } _ f l + f l  1 (1.22) 
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which follows by duality, as noted in ref. 3. Now, suppose that (1.17) holds 
for all fi >/~o ~> 1. Then 

t/(fi) = 1 for /3 >/?o 

and (1.22) implies that, for fl < rio, 

q(fi) = 1 + 2//~ (1.23) 

which coincides with the value of the corresponding exponent in the 
ordinary Gaussian model (niE ~, for all i) with inverse covariance deter- 
mined by g*. The finiteness of flo follows from our results in Sections 3 
and 4. It is an interesting open problem to prove or disprove that/3o = 1. 

For  g r  g*, we can deduce upper and lower bounds on r/(fi) from 
(1.23) with the help of the correlation inequalities in ref. 4. 

1.2. Connect ion between the Discrete Gaussian Chain and the 
Quantum Mechanics of a Particle in a Periodic Potential ,  
Coupled to Quantum Mechanical  1If Noise 

We consider a quantum mechanical particle moving on the real line 
under the influence of an external potential V and coupled to one compo- 
nent A 1 of a slowly varying gauge field. The position variable of the particle 
is denoted by x, its momentum by p. The one-particle Hamiltonian Hp is 
given by 

H =  1 P 2M[P-eA~(x)]2+ V(x) (1.24) 

where M is the mass of the particle, e is its charge, and we shall require 
henceforth that 

Aa(x),,~ Al(O) (1.25) 

[We shall, in fact, replace Al(x) in (1.24) by Al(0). ] For polynomialty 
bounded potentials V~>0 and arbitrary AI(0)~N, Hp determines a 
self-adjoint operator defined on a domain dense in NCp := L2(A, dx). 

The dynamics of the field A1, for e = 0 ,  is given by a free-field 
Hamiltonian Hf defined on some domain dense in the Fock space o ~ of 
states of the field oscillators by 

H r= .I dk [kl a*(k) a(k) (1.26) 
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where a* and a are standard creation and annihilation operators. The 
operator Hf is positive and self-adjoint, and its ground state is the usual 
Fock vacuum ~00. Expressed in terms of creation and annihilation 
o p e r a t o r s ,  A 1 is given by 

f O(k)lkl) u2 {a,(k) ei(lklt_k.x) Al(x, t ) =  dk(2 + h.c.} (l.27) 

where 0 (the ultraviolet cutoff) is a real test function with 0(0)= 1. If the 
support of 0 is concentrated around k = 0 ,  then (1.25) holds. One easily 
checks that (1.26) and (1.27) yield the formula 

(At(O) ~oo, (e I,IHj_ 1) As(x) ~Oo) 
1 e i k  �9 x f t" 

- t dco 1) / O(k)  + (1.28) 

In particular, 

(AI(0) (,00 ' (e-itl H r  1) AI(0 ) q)o) = j dP(co)( ei'~ 1) (1.29) 

where 

dp(co) ~--~ for co ~ 0 distribution 

We are interested in the dynamics of the 
Hamiltonian H given by 

H:=Hp+Hs 

coupled 

acting on the Hilbert space 

(1.30) 

system with 

(1.31) 

s lim ~(t) (1.33) 
t ~  - ?oo  

~( t )=  e-tH(c$~ @ (P~ 
IJe-'H(6o | Cpo)II 

(1.34) 

where 

One of the simplest questions one can ask about this system is whether H 
has a normalizable ground state in x4 p. Let us assume that V has a 
minimum at x = 0 ,  and let 6o(X) denote the 6-function at x =  0. If one 
exists, a ground state ~ of H can be obtained as the limit 

:= ~ |  (1.32) 
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where IL()[I denotes the norm on ~ .  Note that, although the norm of 
60| o is infinite, the norms of the vectors e - m ( 6 o | 1 6 2  are finite, for 
t > 0 .  

The states ~b(t) can be studied with the help of the Feynman-Kac 
formula. In particular, for an arbitrary function F of x, we deduce from 
(1.24), (1.26), and (1.31) that 

( cI)( t ), FcrA( t ) ) 

= Z  1 f E-t,,? dW E ,,~(x(.)) 

x e x p [ - f :  V (x ( r ) )dr lE(exp l i e f~  A~(r)2(r)dr])F(x(O)) 

(1.35) 

where dW{_t.,] is the Wiener measure on the space of Brownian paths 
x(r), r e  I - t ,  t] ,  with x ( - t )=x ( t )=O,  the functional E is the imaginary- 
time (Euclidean) vacuum expectation on configurations of the field A1, and 
ZE ,,tl is a "partition function." Using the fact that E is Gaussian, we 
conclude that E is completely determined by the "covariance matrix" 
(1.28), and hence 

• - ~ _ , I  [ x ( r ) - x ( a ) ] 2 g ( r - a )  drd~ (1.36) ~ e x p  

where 

Thus, for 

g(r) = f co2e T M  dp(co) 

1 
const.  1 + r 2 as Irl --' oo (1.37) 

V(x) = 2  cos(2~x) (1.38) 

the expectation (1.35) approaches that of the continuum limit of the dis- 
crete Gaussian chain, with 1/r 2 interaction energy, as 2-~ oo. Also, for 
V(x) = Z(x 2 -  1)2, the expectation (1.35) approaches that of the continuum 
limit of the Ising chain with 1/r 2 interaction energy, as Z --* oo. 

In order to simplify our problems, we shall discretize the imaginary- 
time variable z: ~ ~ R is replaced by r e Z, and x(r = j)  is denoted by nj, for 
j ~ 2. Although our analytical methods are applicable to the models with 2 
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finite, but large, we shall only study the limiting models, with 2 ~ oo. 
After these simplifications, we shall prove, in Sections 3 and 4, that the 
model with V given b y  (1.36), 2 ~ o% exhibits a depinning (roughening) 
transition as/q--e  2 is lowered. Physically, this means that the Hamiltonian 
H given in (1.31), with V as in (1.38) (2 large enough), has a normalizable 
ground state f2 localized near x = 0, provided e 2 is large enough, while the 
(generalized) ground state of H is extended for small values of e 2. [For 
V(x) = 2(x 2 -  1)2, the results in refs. 1 and2 suggest that the ground state 
of H is doubly degenerate, and the symmetry x ~ - x  spontaneously 
broken, for large values of e 2, while it is unique for small e2.] 

It would be more interesting to study properties of charge transport, 
as described by e itH, for different values of e 2, but our methods are inade- 
quate for that task. 

Remark. The quantum mechanical system described by (1.24)- 
(1.32) is essentially equivalent to one with Hamiltonian 

where 

H = Hp + H y -  const 

A 
Hp= 2M + V(x) + eCo(x) 

with CO(x) given by the rhs of (1.27) (at t=0 ) ,  and H f a s  in (1.26), in the 
approximation where Co(x) is replaced by 

CO(0) + ( d  CO)(0).x 

One might want to interpret CO as an electric potential acting on the 
particle. In view of (1.29) and (1.30) one could say that CO describes 
quantum mechanical 1If noise. 

For some background material on the problems described in this 
section see ref. 8. 

2. P R E L I M I N A R Y  C O N S I D E R A T I O N S  ON THE 
L O W - T E M P E R A T U R E  P H A S E  

2.1. Descr ip t ion  of  the  Problem 

For LE N, let A -  [ - L ,  L]  ~ 2  and Ac=--2~\A. Let s ~ and let 
OA be a subset of configurations n - (ni)i~z defined by 

s A := {ne~2: ni=--O for i eA  C} (2.1) 

822/63/3-4-3 
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We consider a system specified by a Hamiltonian function defined on s A 
as follows: 

1 

H(n) := 2 i ~ g(i-j)(n i -  nj) 2 (2.2) 

for a (positive) g( i - j )~ [ i - j 1 -2  for li-j[ large. Under the above 
assumptions we say that the system has zero (Ising) boundary conditions, 
as compared to adiabatic (Dirichlet) boundary conditions defined by the 
additional restriction 

g(i-j)=-O if Ii] or [ j t > L + I  (2.3) 

For fl > 0, a finite-volume Gibbs measure on g2A is given by 

~A'~(F)- E,~A (e-~n(")) (2.4) 

By simple arguments, the measure #A,~ defines a unique probability 
measure on f2, denoted by the same symbol. 

Our problem is to show that, for /3 >/30, for some sufficiently large 
0 < fl0 < 0% the sequence {#A,~} converges, as A /~ 77, and that the expec- 
tation (2.4), for F an exponential function, is uniformly bounded in A. The 
solution of this problem is based on energy-entropy arguments similar to 
ones in ref. 1 for the 1/r 2 Ising model. 

2.2. C o n f i g u r a t i o n s  and Contours  

Let ff~Ising(A) consist of sequences a- (a i ) i~  of spins such that 
crie { - 1 ,  +1},  and if i~A c, then cry_= -1 .  Let Z* be the set of bonds of 
the lattice 7/. Identifying be  Z* with its midpoint, we have 7/*~ 7/+ 1/2. 
We set 7/* = Z * n  (A w~?AC) *. Each configuration o'~ising(A ) defines a 
unique even subset F - F ( a ) c  Z* as follows: 

b~F i f f  r  (2.5) 

- 7/A of spin flips and # F ( r  is even. Conversely, each even subset F c  * 
determines a unique configuration a-= ~r(F)~ Qlsing(A). 

For a subset 7 c F  let b (7) be the smallest and b+(7) the largest 
bond belonging to 7. The diameter d(7) of 7 is, by definition, equal to 
b + ( 7 ) - b _ ( 7 ) + 1 .  Let I (7 ) -Z*c~[b_ (v ) ,b+(7 ) J  and I_+(?)- ={i~I(7)* :  
0"i (~)) : • 
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Each set of spin flips F _ c 2 *  ( # F  even) can be partitioned into 
primitive contours {7~,..., ?~} satisfying the distance condition (D) of 
ref. 1: 

(D a) 

( D b )  

(D c) 

# 7~ is even, 

~ c ~ ? ~ , = ~  if ~#c~', ~ ? ~ = F  

dist(y~,7~,)>M[min(d(7~),d(y~,))] 3/2 for e C e '  (2.6) 

If 7 is a subset of spin flips in 7~ satisfying 

dist(?, 7~\7) > 2Md(y) 3/2, then # 7 is odd (2.7) 

The constant M >  l is assumed to be sufficiently large, but inde- 
pendent of F and A. Following ref. 2, we can and do assume that the 
partition {?~} of F given above is (unique and) maximal. (Then the 
contours ?~ are called irreducible.) 

For N E ~ ,  we define the following characteristic functions on 7/: 

and 

{~ for Inil > 2N (2.8) 
Zt+~)(n~) - otherwise 

z(N1)(n~) -= 1 - z~](ni) (2.9) 

To each F we associate a unique subset of s i.e., of n-configurations, on 
a level N e  N, defined by the characteristic function 

.(N) i n  i )~(FU)(~l) ~- H ~i(F)' ) ( 2 . 1 0 )  

We say that the sets F~ and F~, are compatible, writing F~ 7 F~,, iff 

cri(F~) => ~,(F~,), l eA  (2.11) 

We note that if F~I 7 F~2 7 "'" ~ F~N, then 

N 

I1 o 
K = I  

(2.12) 

(K) n where )GK ( )  is given by (2.10) for F=F~,, and we say that the family 
{F~,..., F~N } is compatible. 



466 FrOhlich and Zegarlinski 

2.3. A Short  Review of the 1 / r  z Ising Model  

Theorem A of ref. 1 says that, for any primitive contour ? in a maxi- 
mal partition of a configuration F of spin flips satisfying condition (D), for 
some sufficiently large M > 1, the following lower bound is fulfilled: 

Olsing(r ) -- g ls ing( / ' \7  ) ~_~ 2~'Hlsing(7 ) (2.13 ) 

with a constant g > 0 independent of F, 7, and A. 
Let { iKEY_+l /2 :K=l , . . . , r }  be an increasing finite sequence 

specifying a set 7 of spin flips. The logarithmic length L(7) of 7 is defined 
by 

L(7) := ~ {[ln2(iK+l--ix)] + 1} (2.14) 
K=l , . . . , r  

From ref. 1 one has the following estimations: 

(a) An energy estimate: If M is sufficiently large, then there is a 
constant Cx > 0, independent of the choice of primitive contours 7, such 
that 

mlsing(7 ) ~ CIL(7  ) (2.15) 

(b) Entropy estimate: There is a number C2 >0,  independent of A 
and the choice of a point iEA, such that, for any R e  N, 

# {7 = primitive contour: i~I(7), L(7) < R} <e c2R (2.16) 

The standard way, for bounded spin systems, to get an estimate on the 
probability of a primitive contour 7 to be present involves using the Peierls 
transform, defined as the map 

*: {r(cr): a e s ), ? c r(cr) } --* {F(cr): a e ~Qising(A) } 
(2.17) 

F~---~ F* := F \7  

Using the definition (2.17) we have (with H-gls ing) ,  

PA.~(?) Y~'~:~=v(~)e-BH(~) ~ r : . ~ r e  pmr) 
-- ~ e - ~ m ~ )  - ~ r  e--~H(F) 

(2.18) 
- -  ~ F * : y c  F e--fill(F*) 

Writing the rhs of (2.18) in the form 

rhs(2.18)_~.r:~re-~H(r*)e-~(H(r)  s4(r*)) 
~r:  .~ r e_ptt(r. ~ (2.19) 
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and using (2.13), we get the following Peierls estimate: 

P A,~(~ ) <= e -cflHIsing(V) (2.20) 

Then, using (2.15) together with the entropy estimate (2.16), we conclude 
that, for fl > flo with flo > 0 large enough, 

pA.~(a~=l)___ ~ pA.p(y)< e a~ (2.21) 
7: i ~  [ (7 )  

for some constant g > 0 independent of A, i ~ A, and/L 

3. PEIERLS EST IMATE FOR THE DG M O D E L  AT LOW 
T E M P E R A T U R E S  

3.1. Basic Ideas 

Consider first the problem of estimating the probability of the event 
{nCt-2A: Inil >2}  for some arbitrary i e A  defined with the measure #A,~" 
Using the notation of Section 2.2, we have that 

l~A,~{ne QA: tng I >2}  - #A,~Z~](n,) 

: Z 
F:  c~i(F ) = + 1  

(3.1) 

The last sum can be represented using primitive contours {y, a~(y)= +I } 
as follows: 

Z Z #A,~g~)(n) :- Z P (A1,)~(7) (3.2) 
y:cri(y)= +i F : T c F  y:~i(y)= +l 

Our task is to establish a Peierls estimate, i.e., to prove an upper bound on 
the probability P(A[)~(7) of existence of a primitive contour 7. Since our con- 
figuration space s A is noncompact, we use a modified Peierls transform in 
order to reach that goal: For  {F: 7 c F}, we define a map 

Z~(i)(ni) I~ Zg](ni) H 2~](nz) (3.33 
i~ A \ I ( 7  ) iE I (y) ia I+(?) 

where 

-(13 _ [1 for ]nil > 1 
Z +l(ni)= = (3.4) 

0 otherwise 
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By virtue of the simple fact that 

o< E 
F:  F ~ 7 fixed 

we get that 

(3.5) 

(3.6) 

We see that in order to get our Peierls estimate, we have to prove a 
uniform (in F) bound from below on the factors (I~A,r For that 
purpose, for a given F, 7 c F, we change variables in ItA,~2 r, by passing 
from the variables {fie supp Zr} to the variables {n e supp Zr}, defined by 

fti=~n i for i eA \ I+(7 )  
(3.7) 

~l i~l~i - -S  i for i~I+(7)  

where s~ ~ sign ni. 
Then we have that 

H(~i) = H(ni) - ~ g(i - j ) [ 2 ( n  i - nj) s i -  1 ] 
i t  1+(7)  

j ~  A\I+(7) 

1 
2 ~ g ( i - - J ) [Z (n i -n j ) ( sg - sJ ) -  (s~-sj)2] 

i, j e I + ( y )  

Using this identity and defining # r  by 

(3.8) 

pr(F ) := #A,~()~r" F) (3.9) 
#A, f l ( )~F)  

we obtain from Jensen's inequality the following lower bound: 

# 3 , ~ r  f > exp ~fl ~ g(i-- j )  # r ( 2 ( n i -  nj) s i -  1) 

j ~ A \ I + ( y )  

1 } 
+ fl~ ~, g ( i - j ) # r ( 2 ( n i - n j ) ( s i - - s f l - ( s , - s j )  2) (3.10) 

i, j e  1+(7) 

Let us analyze the exponent on the rhs of (3.10): First we note that if i, 
j e I+(7) ,  i.e., Inil, Injl >2,  then 

2(hi- Hj) (S  i - -  S j )  - -  (S i - -  Sj)  2 ~ 0 (3.11) 
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Next,  for i ~ I + ( 7 )  and j e I  (F)  [ a s ( F ) = - 1 ] ,  i.e., [ n i l e 2 ,  [njl<=l, we 
have that  

2 ( n i - - n  s) s i - -  1 = 2 ( t r i l l -  sin s) -- 1 >= 1 (3.12) 

Hence 

Z 
i~ l+(y) 

] c A \ I +  (y),  aj (1") = -- 1 

g ( i - j )  # r ( 2 ( n i -  nj) s , -  1) > H, si~g(F ) - Hi~ing(F\2 ) 

(3.13) 

and, by virtue of (2.13), 

g ( i - - j )  #r (2 (n ,  -- nfl s i - -  1) > ?Hising(7 ) (3.14) 
i~l+(y)  

j E  A \ I  + (7 ) ,~)(  F )  = --1 

for some constant  ~ > 0 independent  of ~ (F, A, and/~).  The  last par t  of  the 
first sum in the exponent  of the rhs of (3.10) is bounded  f rom below as 
follows: 

g(i--j)/~r (2(ni- n j) s i -  1) 
i~/+(y)  

j e l + ( F \ y )  

> _ ~ g ( i - J )  Z [ l ~ r ( l n s l - 2 ) + l ]  
i E I + ( 7 )  

j ~ I+ ( F \ y )  

(3.15) 

Here we use the fact that  only configurations for which 

(ni -- n s) si = Inil - sin s < 0 (3.16) 

are dangerous  for us. But (3.16) can happen  only if si = sj. However ,  in this 
case 

Init - s inj  = (]n,I - 2) - (Injl - 2) ~ -(Insl - 2) (3.17) 

[since i6  I+(7) ,  so that  I n i l -  2 > 0].  No te  that,  under  our  conditions, one 
can expect that  #r( lnj]  - 2 )  is smaller than # r  Injl. Combin ing  (3.10)-(3.15), 
we conclude the following Lemma.  

Lemma 3.1. For  any F containing some fixed contour  7, 

j ~ I+ (v\~) 

(3.18) 
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for some constant c e (0, g) independent of 7 (F, A) and fi [provided M >  1 
in the definition of condition (D) is chosen sufficiently large]. | 

Our Peierls estimate would be complete if we were able to prove a 
bound 

#r(Injl - 2) < C (3.19) 

for some constant C > 0 independent of j e I+ (F\7), 7, F, A, the constant 
M, and ft. 

Let us remark that then, by choosing the constant M sufficiently large, 
we may have an estimate from below of the exponent on the rhs of (3.18) 
by fi(c/2) H~ing(?). 

Let us now start our proof of (3.19). First, we note the simple fact 
that, for j ~ A ,  a j (F)= +1, 

#r(lnjI - 2) = {~r [x(Inj] < 3). (dnjI - 2)] + ~r [z(Injl > 4)] 2} 

+ #r(z(ln;I > 4)([ni1-4)) 

<~ 2 + #r(z(ln;I > 4)(In;I - 4)) (3.20) 

The second term on the rhs of (3.20) can be represented with the help of 
contours on level N = 2 compatible with F. We then have 

l~r(z(lnj] >= 4)(tnjl - 4)) 

= ~ [ ~ #r(Z~) �9 (tnyl - 4)) 1 (3.21) 
y ' :  a j ( 7 ' )  = + 1  F ' : F ~ F ' , y ' c F '  

with {7'} ranging over primitive contours and the convention that if 
{F': F ~  F ' ,  ? ' c  F '}  = ~ ,  then the corresponding sum in square brackets 
is zero. 

Writing 

- (2 ) )  # r ( Z T ) ' ( I n j l - 4 ) )  = ~ l~r(Zr' #r , r , ( In j l -4)  
F':  F ~  F ' , F '  ~ y' F ' :  F ' ~  F ' , ? ' c F '  

(3,22) 

and inserting this identity into (3.21), we derive from (3.20) the inequality 

y F F ~ - F  7 o F '  

Using this inequality, we observe that if we had a bound 

#r,r-( In/, I - 4) < C' (3.24) 
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for some constant C ' > 0  independent of F"(v',A, fl, M) and j" ,  
a/,(F") = +1, then, by the arguments analogous to those in (3.17)-(3.18), 
we would be able to complete our Peierls estimate for the primitive 
contours 7'. Having such an estimate for 

--- Z 
F ' : F ~ F ' , 7 ' ~ F '  

(which is of the same form as for the corresponding Ising model) and using 
(3.23)-(3.24) then, for sufficiently small temperatures fl-1, we would obtain 
the upper bound 

#r(lnf - 2) < 2 + #~(z(Injl ~ 4)). c' (3.25) 

Since the rhs of (3.25) is independent of A, fl, and, moreover, of F and j 
provided the temperature is sufficiently small, we are then able to complete 
our Peierls estimate on the level below. We propose to iterate this proce- 
dure. We will show that, at some sufficiently high level (depending on A), 
a bound similar to (3.24) is easy to prove. From that we will 
simultaneously get a Peierls estimate at every level and a bound uniform 
in A as well as in j E A  for #A,~ Intl. This will be carried out in the next 
section. After generalizing our arguments in the proof of the bound on 
#A,fl [f/jl, we  will get in Section 3.3 the exponential bound and restricted 
analyticity properties. 

3.2. The Peier ls Es t imate  C o m p l e t e d  

We start this section by proving two technical lemmas that will be 
needed to prove the Peierls estimate on an arbitrary level. 

For  a set F of spin flips in ~r~ising(A), let 

#r(F) . -  #A'e(Z~)" F) #A,~(7~)) (3.26) 

and for any compatible family {F~(I~,...,F~(N)}, N e N ,  N>__2, we define 
recursively 

(~,(N) . F )  #F~(I),..., Fa(N-I) LFe(N) 
#r,(~),..., r,(N_L),r,(N)(F) := ",,(X) ) (3.27) 

#F~(I),-.., F~(N- I)~], F~(N)- 

If 7 is a primitive contour contained in F, then we define 

 gv>( n):= [I ('+ II (3.28) 
ieA\ l+(?)  is  1+(7) 
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with 

2~)(ni ) = {10 fOrotherwise[~i[ ~ 2 N - - 1  (3.29) 

L e m m a  3.1.  
primitive contour ~ _~ F~(N) , 

[~(N)  
#Fe(l),..., Fa(N llkL Fc~(Ni] 

[,v(N) l 
#F~(1),.-., Fz(N-I)~,/~Fa(N)] 

i �9 I+ (7) 
j e 1+ (F:(N)\y) 

For any compatible family {-Fc~(1 ) ..... -F'~(N) } and any 

g(i--j)#r~(l),...,ro(u)(lnjl--2N))} 

for some positive c < g independent of N, ?, {F~(I) ..... -F~(N)}, A, and ft. 

(3.30) 

I 

Romork. The proof is similar to the one of Lemma 3.1. 

ProoL Let us define 

) ~r~,),..., ro(~l --- Zr~(K) ~r~(N) 
1 

Instead of the summation variables {h e supp )~r~(1),..., r~(N)}, we define new 
summation variables {n e supp Zr~(i),..., r~(N)} in the numerator of the lhs of 
(3.30) by requiring that 

~ i=ni  if ieA\]+(7) 
(3.31) 

ni~?li--Si if ie  I+(7) 

with si- sign(ni). 
Then 

H(~)=H(n)- ~ g(i-j)[2(ni-nj) s,-  1-] 
i~I+(7) 

j ~ A\I+ (y) 

1 2 ~ g(i-j)[Z(ni- n j ) ( S i -  Sj)  - -  (S i -  Sj)2-] (3.32) 
i , j~l+(7) 

Inserting this equation in the lhs of (3.30) and using Jensen's inequality, we 
get the following lower bound: 
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~,(N) 
~F~(I),.-., /'~(N 1)~'F~(N) 

~(N) 
~Fg(l },..., /'~(N 1 ) ]~/-~(N) 

>exp  {~ [2 ~ g(i--j)#v~,(z),...,v~lN)(2(ni--nj)si--1) 
i~l+(y) 

j ~ A \ I + ( 7 )  

+ 2 g( i - j ) l~r~(>. . . , r~ ,~) (2(n i -n , ) (s~-s j ) - ( s , - s , )2)]}  (3.33) 
i , j~ I+(y )  

Since, for i, J e I+ (7 ) ,  7 c/W~(x), we have that ]ni], Inj[ >2N, it follows that 

2 ( n ~ - n j ) ( & - s j ) - ( s i - s j ) 2 > O ,  i, j e I + ( 7 )  (3.34) 

Moreover, if aj(F~(N) ) = -1 ,  then [njl < 2 N - 1 ,  and so, for ]nil >2N, i.e., 
a~(F~(N))= +1, we have that 

2(n~- nj) s i -  1 = 2(In~[ - s,nj) - 1 ~ 1 (3.35) 

Hence 

g( i -- j)  P r=(>..., r~(N)( 2(ni -- nj) s i -  1 ) 
i~ l+(y)  

j ~  A \ I+  (7): rYj(F~(N)) = -- 1 

=> Hlsing(fie(N)) - -  Hlsing(/~c~(N)\~) 

> cHis ing(~  ) ( 3 . 3 6 )  

Note that this bound is independent of N and of the compatible family of 
contours {F~(,) ..... F~(N)}. To bound the term 

2 
i~ I+(7) 

j e  I+(F~(N)\7) 

g( i - j )  I~ r~(~>.., r~iNl( 2 ( n i -  nj) s i -  1 ) 

in the exponent on the rhs of (3.33), we proceed as follows. 
Using the fact that for i~I+(7),  jeI+(F~(N)\7) ,  the 

2(n i - n j ) s i  can be negative only if s i = sj, we get the bound 

#r=(l),..., r,(N)(2(ni - nj) si) > - 2 # / -  (1),... ' &lu)(  Injl - 2N) 

From (3.34), (3.36), and (3.37), and the bound 

expression 

(3.37) 

(c-- c) H, sing(y ) > ~ ~ g ( i - j )  
i~I+(y) 

j~  I+ (Fa(N)\ Y) 

(3.38) 
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which holds for any g - c  > 0 if M is sufficiently large, we conclude 
inequality (3.30). | 

In our proof of the Peierls estimate we shall need a bound on the 
modulus of the rhs of (3.37) as N tends to oo. This is provided by the next 
lemma. 

L e m m a  3.2. Let F be an increasing, exponentially bounded 
function on Z with 

F ( 0 )  = 0 

and set 

Eu(io) = #r~,,,..., r~c~(F(n~0 - 2U)(ago(F~(u)) + 1)) (3.39) 

for any compatible sequence {F~(1),..., / '~(u)} ,  N e  N, and any io e A. Then 

lim Eu(io) = 0 (3.40) 
N ~ c o  

Note that (3.40) is trivial unless ~Tio(I'~(N) ) = 4-1, i,e., [n~ol >2N. 
This implies, in particular, that for any h e N+ and any i oe A with 

0"i0 ( F ~ ( N ) )  : 4-1 

lim , t o h ( % -  2N) 1 ) = 0 ( 3 . 4 1 )  
N-~ oc /~F~(I),.,., F~(;@, ~" 

and 

lim #r~l~,..., r,~N~(lne0l - 2N) = 0 (3.42) 
N~o:)  

Remork. In (3.42) we use the symmetry of the measure #r~L~,....r~(N~ 
in n. 

Proof. Since the m e a s u r e s  /~/~(I),...,/~(N) fulfill F K G  inequalities, we 
conclude, using the fact that the function 

I~ z(ni > 0) - ZA, ~ (3.43) 
i ~ A  

I-with z(ni>=O) the characteristic function of the set {ni__>0}] is non- 
decreasing, that 

~'~Fu(I),..., F=(N)()~A, NI " F )  
#r~,~,..., r~(u)(F) < (3.44) 

= #F~(,I,...,r~(N)(ZA, N) 

Next, applying F K G  inequalities to the conditional expectations with 
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respect to {n j, rrj(['~(N)) = - - 1  }, j e A, associated to the probability measure 
on the rhs of (3.44), we find that 

]AFt(U, , Fz(NI()~ A N" F(  n io) ) < Z'~,r = + ~ e -  'H(~) F(  n io -- 2N) 
],/f, (1),...,/, (N)(ZA. IN ) Ztni,ai(F~(N)) = +~ e _ , H ( ,  ) (3.45) 

where Y/ only extends over configurations n for which n j = 2 N  if 
Cj(F~(N)) = --1 for allj. 

Changing the summation variables n~ ~ n~ + 2N, we get that 

with 

rhs(3.45) = [ 
hill7+: 

~i(F~(U)) = + 1  

1 

(exp { - fl [/4(n + 2N) --/J(2N) ] } ) F(n,0)J 

exp{ - / ~ [ ~ ( n  + 2N) - ~ (2N)]  } (3.46) 

cri(F~(N))= +1 

1 
f i ( n  + 2:v)  = g ( i - j ) ( n ~  + 2N) 2 

j G A  c 
i~A,ai(I'~(N))= +1 

1 +5 E 
.j~A,crj(Fa(N))= 1 
i~A,Gi(F~(N))= +1 

1 +5 

g(i-j) n~ 

E 
z , / ' s  A 

:i(F~(N)) = + 1  = Gj(F:(N)) 

g ( i - j ) ( n , - n j )  2 (3.47) 

Then, for the numerator on the rhs of (3.46), we get, using F(0)= 0, that 

exp{ --fl[/~(n + 2N) - H(2N)] } F(nio) 

~i(F~(N})= q-1 

x ~ {exp[ - f lH(n ) ]  } F(n,o ) 
n i c Z + : i ~ A  

The denominator in (3.46) satisfies the obvious lower bound 

(3.48) 

E 
niET_+: 

G i ( F ~ I N ) )  = + 1  

exp{ - f l E F I ( n  + 2N) - H(2N)] } > 1 (3.49) 
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Using that A is a bounded set, we conclude from (3.44)-(3.45) and 
(3.46)-(3.49) that 

EN(io) <=e 2a~C A (3.50) 

where EN(iO) has been defined in (3.39), 

a = i n f  ~ g(i-j)>O (3.51) 
i~Aj~AC 

and 

CA=--sup( j~> e-~H(")F(n~~ n =0 (3.52) 

Remark. Our proof shows that the rate of convergence in (3.40) is 
independent of the family {F~o),..., F~(N)}N ~ ~. Moreover, the lemma also 
holds for adiabatic (Dirichlet) boundary conditions, as follows from the 
estimates shown above. 

For a primitive contour 7 we denote 

Pr~,>..,r~(N~(7)=-#r~(>...,r,c,~{n~QA:TCF, Z(rN+~)(n)=l} (3.53) 

i.e., Pr~o),...,r~iN)(7 ) is the probability, computed with the measure 
#r,,>...,r~(u~, for the primitive contour 7 to appear in the configurations of 
n on level ( N +  1). We now prove that Pr~>..r,~x~(7) is bounded above 
by the probability of the event that the primitive contour 7 appears 
in a spin configuration of the corresponding Ising model, provided the 
temperature is assumed to be sufficiently low. As one can expect from 
our previous considerations, we shall simultaneously show that 
#F~(I},... , re(N)(([nil  - 2N)(ai(F~(m) + 1)) is uniformly bounded in i 6 A, A, and 
{/ '~(1)  ..... Fa(N)}, N6  N. 

We now show that, at sufficiently low temperatures, the Peierls 
estimate can be completed on any level N e N. 

Proposition 3.1. There is a finite constant /~o>0 such that, for 
any fl > fie the following bounds hold: 

(Pl)  For any N~N, {F~(1),...,F~(N)}, and an arbitrary primitive 
contour 7: 

Pr~(>...,r~N~(7) <=exp {--fl 2 H,si~g(7)} (3.54) 
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(P2) for any i e A ,  

#r:(l),...,r,(N)((ln~l--2N)�89 l ) ) < 2 ( l  + e  ~)  (3.55) 

for some constants a, c > 0  independent of N e  N, {F~(I) ..... F~(N)}, 7, i~ A, 
A, and/~ > rio. 

Proof. The proof proceeds by induction. Take N - N ( A )  sufficiently 
large, so that, for any compatible family {F~(~) ..... F~(N)}, we have (from 
Lemma 3.2) 

#r~(1),...,r,(~,[ (]ni[ - 2_N) l(ai(F~(~) ) + 1)3 < 2 (3.56) 

Take M >  1 in condition (D) (Section 2.2) such that, for any primitive 
contour 7 and a set F of spin flips with 7 _c F, we have that 

c 
Hising(7 ) - 3 ~ g( i - - j )  >= 0 (3.57) 

i e l + ( 7 )  jz I+(F\./) 

(From considerations of ref. 1 it follows that this is possible.) 
We now prove the induction step. Assuming that (P2) has been shown 

on all levels ~>N, we prove (PI) and (P2) on level N -  1. 
From considerations similar to those leading to (3.6), we have that, 

for any compatible family {F~(1) ..... F~ (N)} ,  

Pr:,),...,r~(N 1)(7) 

,, , , ( N )  
< s y ~ F/~F~(I),... , Fa( N 1 ) L F  

7Zr:,z=rl~r~(~),...,r~(N_l~Zr (r ~)/~r /~r~(l),...,r~(N-1)/~ J 
(3.58) 

Hence using Lemma 3.1 together with (3.55) and (3.57), we obtain the 
upper bound 

PF~(~,....,1-~(N_,,(7) <= exp {--fl 2Hising(7) } (3.59) 

This completes the proof of (P1) on level ( N -  1). To show (P2), we note 
next that, for any ie  A, 

" 2 ( ( 7 i ( 1 ~ ( N  - 1)) "~- 1 ) )  /~r,(ll,..., r~iN ~l((Inil - 2 ( N -  1)) 1 

< 2 + I~r~(1),.... r~(u_,((Inil - 2N) z(lnil => 2N)) (3.60) 
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The second term on the rhs of (3.60) can be written as follows: 

#12~(lb.... F~(N-l)[-([nil -- 2N) z(tn~[ ->__ 2N)] 

= F ,  . . . . .  F ~ ( N -  1) A, F ) 
y : a ~ ( ? ) =  + 1  F : y c F  

"/~r~l,~,..., r~l~ ~,r(Ingl -- 2N) 

Now, using our assumption (3.55), we arrive at 

Using (3.59) and 
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(3.61) 

]~r~(l),..., ff~(N ~(Inil - 2N) z(Inil >= 2N) 

< 3 ~ Pr~,,..... F~(N_I)(~ )) (3.62) 
7: ~ = + 1  

the entropy estimate (2.16) for primitive contours, 
we conclude that, for /3>/~o, where /30>0 is chosen sufficiently large 
(independently of A, {F~(1),..., F~(N-1)}, and N), 

E PF=<II,...,z~I~. ~(7) < e : t~  (3.63) 
?: ~i(? ')  = + 1 

where the constant ~ > 0 depends only on c > 0 [and on the constants C1 
and C2 from (1.13)-(1.17)]. From (3.60) and (3.61)-(3.63) we obtain (P2) 
on level ( N -  1), i.e., 

#F~(l),..., F~(U-l)(([n/I -- 2 ( N -  1))(I(ai(F~(N_ 1)+ 1))) <= 2(1 + e--'a) (3.64) 

We can and do assume that flo > 0 is such that 

e ~ < 1/3 (3.65) 

Note that, by Lemma 3.1 and (3.58), we have that (3.59) and hence (3.63) 
remain true for K < N  and any {F~(~) ..... F~(m}, as long as 

~(a~(F~(~+~)) + 1)) < 3 (3.66) #r=l~),..., r=(~+l)((lnel - 2 (K+  1)) 1 = 

for any i s A  [since (3.66) guarantees that we can use (3.57)]. 
Hence, in order to complete our induction, it suffices to note that we 

have the following flow for the expectations of primary interest to us: 

5(a~(F~(x))+l))<2 e ~am (3.67) #r~ol..... r,/~((lnil -- 2K) i 
\ m = 0  

This follows by arguments identical to those used in (3.60)-(3.64). Now we 
see that our choice (3.65) of ~0 implies that the rhs of (3.67) is bounded 
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above by 3, for any N and K. This shows that our induction is independent 
of A if fl > flo > 0 is sufficiently large. This ends the proof by taking suitable 
a>0. | 

3.3, Res t r ic ted  A n a l y t i c i t y  at  L o w  T e m p e r a t u r e  

Suppose that/go is so large that Proposition 3.1 holds. 

Proposition 3.2. For any fl>fio there is some finite constant 
/~=h(fl)>0 such that for any thl <h  

l.lA,l~eh~'<e h" [1- -e  (flC--2/~)] 1 (3.68) 

for some constant C >  0 independent of i~ A and A. 

ProoL We follow the idea of the proof of (P2) and use Lemma 3.2, 
(3.41). For ieA and h > 0 let us note the simple fact that 

,llA,fl ghni <<- eh + e2hkta,~(eh(ni- 2)z(lnil >= 2)) 

=e/'-ffe2h E ( 2  (flA,PZ~))l~l"eh(n'-2) ) (3.69) 
2: a~(7) = + 1  F:7~F 

Repeating the same arguments for pr eh(~- 2) and inserting the result on the 
rhs of (3.69), we get that 

IIA,P e ~= el* + Z t-tA,l~)(,(~] eh 
yl:  a~(yl) = + 1  F I :  ?1 c F l  

-~ c2h E 
Yl: Crl'(71) = + 1  

X C 2h E 

72: ~ = + 1  

This bound can be rewritten as follows: 

[,A,~eh'<=e"Ii +e2h ~ Po(7,) 3 
yl: Oi(Yl ) = + 1  

# A.,~(Z & . 
/ '1:  y l ~ F1 

(3.70) 

/ t l  ~ . (1)  ~ 2 h  ,1 oh(ni--4)~ + e2h E ~l~A,fl~l~l iz E E P I ' F I , f f 2 c  ] 

"?1:O'i(71)= 4-1 y2:ffi(T2)= + 1  F 2 : 7 2 c F 2  

(3.71) 
with Po(71) the probability for a primitive contour 71 to appear, computed 
in the measure #A,~--/~0- By induction, using Lemma 3.2 with N=N(A) 
chosen such that chosen such that 

~Z ok(n,-- 2 N )  ~ e h (3.72) 
FI  ,... , /~N ~ 

822/63/'3-4-4 
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we get the bound 

l.ta,#ehni~e ~ {1 + e  2h 2 Po(71) 
Yl: ai(',~ = + 1  

?1: ~ = -t-1 ])27o-i(3;2) = + 1  

+ +e2h 2 2h 2 g 
Tl:O'i(3)l)= ~-1 T2:O'i(72)= + 1  F 2 : T 2 ~ F 2  

~ ( N  1) 
X . �9 e 2h 2 2 ]~FI,..., F N - 2 L F N - I  

YN_l:al(YN_l)= 4-1 FN_I:~N I~FN- .[  

75,: ai(~N) = + 1  

# r~ Z ~2 ) 

(3.73) 

Since from Proposition 3.1 (P1) and the entropy estimate (2.16) we 
conclude that 

Prl,..., rx-~(TK) < e /~c (3.74) 
])K: ai(~K) = + 1  

for a constant C >  0 independent of fi, A, i~ A and {F 1 . . . . .  /'N}, we see that 
(3.73) implies the bound 

Hence, if 

N(A ) 
hni ,~ h #m,~e = e ~ (e2he-l~c) m (3.75) 

m=O 

0 _< h </~ < "---~ (3.76) 
- 2  

then 

t2A,fle hni < eh [ 1 =  - e-(flC-2h)]-i 

This completes the proof. | 

(3.77) 

Proposition 3.1 suggests that the Gaussian behavior of moments of 
#A,~ is violated, since we have only the following bound: 

#A,B(n 2r) <= (2r)! (A(f l ))  r, r e  N (3.78) 

with 0 < A(f l )  < oe independent of A, i ~ A, and r ~ N. 
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4. R O U G H E N I N G  IN T H E  DG M O D E L  AT H IGH T E M P E R A T U R E  

In this section we study the high-temperature phase of the discrete 
Gaussian chain with 1/r 2 interaction energy. We propose to prove the 
bound (1.16), i.e., that there exists some positive, finite constant flo such 

that, for fl < flo, 

( (ni - nj) 2 )~ > const/~ �9 log J i - Jl (4.1) 

as l i - J l  ~ oo. We shall also prove that 

( (ne - n j) 2 ) # _-< const~ - log [i - Jl (4.2) 

as l i -  Jl --* o% for all/~ > 0. 
Inequality (4.1) shows that, at high temperatures, the interface 

described by the DG chain is rough. In Section 3 we have shown that, at 
sufficiently low temperatures and for zero boundary conditions, 

((ni 2 - nj) )~,A < const~ (4.3) 

uniformly in i, j, and A = I - -L ,  L].  This follows from our bounds on 
(n~)~,A, i.e., 

(ny), ,A < const~' (4.4) 

uniformly in A. 
In order to complete our proof of the existence of a phase transition, 

we must prove (4.1) for the same choice of boundary conditions for which 
(4.3) and (4.4) were proven, i.e., for zero boundary conditions. Then (4.1) 
and (4.3) imply that the constant flo is strictly positive and finite. 

Our proof of inequality (4.1) (for zero boundary conditions) is based 
on correlation inequalities, reviewed in Section 4.1, and a result due to 
Kjaer and Hilhorst~3~; see Section 4.2. 

4.1. Some Useful  Inequal i t ies 

Consider the DG chain on 
Hamiltonian 

the interval A =  [ - L , L ]  with 

1 
H g = ~ . ~  nig( i , j )n j  

I, j G A  

where ni, i~ A, is a real random variable with a priori distribution 

(4.5) 

dp;.(ni) = exp 2 cos(2rcn/) dni (4.6) 
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for some 2 e (0, oe ]. The Gibbs state of the system confined to A is given 
by 

L 
f e-Hg(n)F(n) 1-1 dp~(ni) (4.7) (F)g,~ = (F)g,:,,A := Z-lg,;.,A 

i= --L 

where the partition function Zg,~,A is chosen such that (1 )g ,~=  1. 
Let f=-(f(i))s~A and h=(h(i))i~ n be two sequences of complex 

numbers. We define their scalar product (f, h) by setting 

(f, h ) : =  ~ f(i) h(i) 
i~A 

This equips C 2L+t with a scalar product, hence making it a Hilbert space, 
which is commonly denoted by/2(A). The matrix g(i, j) defines a quadratic 
form g on 12(A) by 

(f, gh) := ~ f(i) g(i, j) h(j) 
i , j~A 

We say that g x > g2 iff 

(f, g l f ) > ( f ,  g2f) for all f e l z (A  ) (4.8) 

We are now prepared to state some basic inequalities (of Ginibre type) 
proven in ref. 4: Let f be an arbitrary element of 12(A), and set n(f)=- 
(n, f )  = ~j~A njf(j). Then 

( In( f ) l  2)gl,)A ~ ( I n ( f ) l  2)g2,22 (4.9) 

whenever gl > g2 > 0 and )41 > 2 2, i.e., (In(f)12)g,~ is monotone decreasing 
in g and 2. As corrollaries of (4.9) we have that 

((ni-nj)2)g<= ((ni-nj)2)g,o 

= ( g  1)(i , i )+(g-~)( j , j ) -2(g 1)(i,j) (4.10) 

(n~ )g< (g-1)(i, i) (4.11) 

where ( ( - ) ) g  = lim~ . ~o ( ( ' ) )g ,~  is the expectation of the DG chain with 
interactions g(i, j), g-~ is the inverse matrix of g > 0, and ( ( . ) )e ,0  is the 
Gaussian expectation with mean 0 and covariance g ~, as is seen from 
(4.7). Furthermore, we have that 

( ( /7  i - - /Tj)  2 )fig,;. and (n~)  ~g,2. are monotone decreasing in fi _> 0 (4.12) 

for all 0 _< 2 _< o% whenever g > O. 
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4.2. Consequences  of the  Results of  Kjaer and Hi lhorst  (a) 

By combining the so-called sine-Gordon transformation (see ref. 9 and 
references given there) with a transformation due to Cardy, (5/ Kjaer and 
Hilhorst (3) have been able to analyze a special DG chain, at a special value 
of the inverse temperature fl, explicitly. They choose periodic boundary 
conditions n L + x + i = n  L_l+i  and pin nL+l at height O, i.e., n L + l = 0 .  
Furthermore, they choose a self-dual interaction, g(i, j ) := g * ( i - j ) ,  given 
by 

X [sin (~(J ']- 2)) sin (To(J-- 1)~] 1 \2L-~ \ 2 ~ 2  JJ (4.13) 

for [jp = 1,..., 2 L -  1. By using a Fourier transform, it is not hard to show 
that g* >0 ,  as a quadratic form, see (4.8); and from (4.13) one has that 

g,(j)__, g . ( j ) = ( j 2  , - ~  - ~ )  , j ~ Z  (4.14) 

as L-~  oe. 
It is then shown in ref. 3 that 

((ni--nj)2)g, = lim ((ni--nj)2)g 2 

1 
"~ 2rc~ 5 log t i - Jl (4.15) 

as [i--j[--* c~. 
Equation (4.15) follows quite easily from the self-duality of the model 

with g = g* and 2 = oe; see ref. 3. 
The function g* determines a positive-definite matrix gL = (~L(i, j ))  

such that, for an arbitrary sequence f e  12(A), with f ( L  + 1) = 0, 

g * ( i - j )  J f ( i ) -  f(j)[ 2 f(L+l)=0 
- - L < ~ i , j < L + I  

= 2 f( i)  gL(i, j) f ( j )  (4.16) 
--L<_i~j<L 

Let gL be any matrix with the property that 

0 <  gL <=A~,L (4.17) 
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for some finite constant A. Let 0 < fl <_ A -  x, so that 0 </~gL =< gL- Then it 
follows from inequality (4.9) that 

( (hi - nj) 2 )~gL > ( (n i  - nj) 2 ) ~  (4.18) 

for all O < fi < A 1. 
Next, we observe that any function g on 7/ determines a quadratic 

form gL on 12(A) by setting 

f ( i )  g L ( i , j ) f ( j ) : =  ~ g ( i - - j ) ] f ( i ) - - f ( j ) l  2 (4.19) 
L ~ i , j < _ L  i, j E •  

with f ( i )  = 0, for all iE 7/\A. 
The point is now to choose a function g with the properties that 

0 <  g ( j )~cons t - I j1 -2 ,  as IJl ~ o% that the estimates proven in Section 3 
are valid for the DG chain with equilibrium state ((.))~gL, gL as in (4.19), 
for fl and L large enough, and that 

gL < Ag, L (4.20) 

for some A < oo independent of L, for L large enough. Then it follows from 
(4.18) and (4.15) that, for 0</~_<_A -1, 

( ( h i -  nj) 2 )#gr > ( ( n i -  n j)  2 )g l  

1 
~- ~ log li--j[ (4.21) 

for L large enough, which proves (4.1). 
It also follows from (4.10) that 

( ( n i -  n~) 2 ) /~gL < ( (ni - nJ) 2 ) ~gL,~. = o 

< const ./~-1 log ( l i - j k  + 1) (4.22) 

This upper bound shows that the lower bound (4.21) is poor, for very small 
fl, since the rhs of (4.21) is independent of/L This unsatisfactory state of 
affairs can be improved if one is willing to use the rather involved tech- 
niques developed in ref. 9. As shown in ref, 3, the DG chain at inverse tem- 
perature fi is equivalent to a classical lattice gas of charges q ~ 2~ interacting 
through a logari thmic potential (as L - ,  oo), at inverse temperature 
/?, :=fl-1.  This lattice gas can be reconstructed from a two-dimensional  
lattice Coulomb gas  of charges by "dimensional reduction," i.e., by 
confining the charges in the two-dimensional  system to a line of sites 
{j= (jl j2)~  22: j2  =0}.  For/~* large enough, this system can be studied 
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with the help of the techniques developed in ref. 9. These techniques prove 
that, for sufficiently large/~*, i.e., sufficiently small/~, 

(ni - nj) 2)~gL > const '  - fl ~ log ] i -  j] (4.23) 

for a suitable choice of g and L large enough. [ In  particular, thanks to 
inequality (4.9), the function g used in Section 3 and zero boundary  condi- 
tions are compatible  with the requirements of ref. 9.] 

We note that the lower bound  (4.23) has the same structure as the 
upper bound  (4.22) (same/~ dependence, for small/~), which is nice. 
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