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The Phase Transition in the Discrete Gaussian
Chain with 1/r* Interaction Energy

J. Frohlich! and B. Zegarlinski?
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We exhibit a phase transition from a rough high-temperature phase to a rigid
(localized ) low-temperature phase in the discrete Gaussian chain with 1/r? inter-
action energy. This transition is related to a localization transition in the ground
state for a quantum mechanical particle in a one-dimensional periodic potential,
coupled to quantum 1/f noise.
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1. INTRODUCTION

1.1. The Main Results

In this paper we rigorously establish a transition from a rough, delocalized
high-temperature phase to a rigid, localized low-temperature phase in the
discrete Gaussian chain with 1/r* interaction energy. The Hamiltonian of
the discrete Gaussian chain is chosen to be

1
HPS(n) =3 T, gli= )= )’ (1

where i and j range over 7, n,e 7 is a height variable (e.g., the height of
an interface over i, or the difference of the position of a particle to its
equilibrium position), and g(i — j) is a coupling function. We assume that

glry~r—2, o=2, as r— w (1.2)
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For o> 2, the system with Hamiltonian (1.1} is expected to always be in
the rough phase, ie., there is a constant Cj;, with C;~ 1/, for f small,
such that

ny—n)?Yp~Cyli—jl7, v=min{e—2, 1) (1.3)

as |i—j| —» oo, while for «<2, a rigid phase with (C; a p-dependent
constant)

i< Cy (1.4)

appears to persist, for all . In (1.3) and (1.4), {(-)), denotes the equi-
librium state determined by HPY with 0-boundary conditions at inverse
temperature f. Behavior (1.3) is related to behavior (1.4) by a duality
transformation, so that (for suitably chosen boundary conditions) it is
enough to prove (1.3), say. This is not a particularly easy task if one wants
to establish (1.3) for all values of 5. [A Peierls argument—see Section 3—
can be used to prove (1.4), for large enough values of f. We expect that
(1.4) could be proven directly, for smaller values of f, by using a finite, but
B-dependent sequence of renormalization transformations, followed by a
Peierls argument. ]

In order to explain why we do not expect to observe a phase transition
in the discrete Gaussian chain for interactions with g(r) ~r ™2, o # 2, while,
for «=2, a transition will be proven to exist, we shall now discuss a
heuristic energy—entropy argument. We first discuss the models with o > 2.
(The models with a <2 can be understood in terms of the models with
«>2 by using a duality transformation.®’) We shall first estimate how
much energy needs to be paid for the interface described by the discrete
Gaussian chain, with n; interpreted as the height of the interface at site j,
to reach a “macroscopic” height. From the form (1.1) of the Hamiltonian
we see that configurations of height variables of comparatively small energy
are those which exhibit only unit jumps. More precisely, for the system
confined to the interval 4 =[ —L, L] = 7Z with zero boundary conditions,
the relevant configurations can be described as follows: A configuration »
of height variables is said to have unit jumps only iff there is a partition
{I,};— «x. xof A4into 2K+ 1 disjoint intervals with the property that

n,=N;, forall iel; (L1.5)
for integers N, such that [N, .| <1, and
|N,1‘“N,1i1|=1 (1.6)

Such “staircase” configurations n({I,}) can reach a maximal height K. We
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shall now choose K, the integers N,, and the lengths |7,| of the intervals
I, for 2= —K, —K+1,.., K. We set

11, = a ()" (1.7)

where & := o — 2, n is an arbitrary permutation of { —-K, —K+1,..,0,.., K},
and a>0 is some constant. Since

K
Y ILi=2L
= —K
it follows from (1.7) that
K=0(LV?*9) [xO(L%%), for ¢ small] (1.8)
Finally, we set
N,=K—17] (1.9)

Thanks to the rapid growth of the lengths of the intervals /.-, in |4],
prescribed in (1.7), the emergy H(n({I,})) of a configuration n({I,})
satisfying (1.7)-(1.9) turns out to be bounded from above by a constant
times the sum of interaction energies of adjacent intervals which, by (1.6)
and (1.1), is proportional to K. Hence

H(n({I,})) <bK ~ O(L*?) (1.10)

Clearly, the entropy of the set of configurations n({l,}) satisfying
(1.7)-(1.9) behaves like

S$® L O(KIn K) (1.11)

Thus, entropy dominates energy at arbitrary temperatures, and we
conclude that the maximal height »,,, of the interface behaves like

Roax = O(LYC T )~ O(L*~2)7) (1.12)

for «—2 small, at arbitrary temperature. It is well known that, for a >3,
Flax = O(ﬁ), at all temperatures, as follows from a central-limit
argument. We believe that these bounds could be made rigorous with
some hard work.

Let us now turn to the case where o <2. It follows from (1.12) by
duality that the interface is rigid, at arbitrary temperatures. This can also
be understood directly: We give a heuristic estimate of the probability that

the height n, at the origin is |ny| = K, for some large, positive integer K.
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For this event to occur, the origin must be in the interior of a configuration
of jumps. Choosing these jumps to be bounded, there will be O(K) jumps
surrounding 0. The energy of this class of configurations grows at least
like K*~¢ while the entropy behaves like S'=0(KIn K). Thus, the
probability pg of the event that ny = K appears to behave like

pr<exp(—BeK’ *+dKIn K) (1.13)

for some finite, positive constants ¢ and d. We conclude from (1.13) that,
for a <2,

px—0 as K- w (1.14)

for arbitrary > 0; hence the interface is always rigid.
When o =2, the behavior of the energy is given by O(K In K), and we
obtain

pr~exp[ —(fc—d)Kln K] (1.15)

We thus expect that there is a phase transition from a rigid to a rough
interface at some finite, positive value of B. This will be proven in
Sections 3 and 4.

Let us remark that the arguments sketched above work for zero and
for Dirichlet boundary conditions, with the same conclusions.

It is well known that for o >2 the corresponding Ising model has no
phase transition. For the Ising model with 1/r* interaction energy, the
existence of a phase transition has been proven in ref. 1. The existence of
a phase transition in the Ising model with 1 <o <2 is an older result
proven in ref. 6. Why does that not suggest that there is a phase transition
in the corresponding discrete Gaussian chain, for 1 <o <2? The reason is
as follows: In order to find the behavior (1.13) for p,, we must make sure
that the distance between consecutive jumps satisfies some growth condi-
tion (linear growth). This is because, otherwise, the interaction energy
between distant intervals would be too large, due to the factors (n;—n;)?
appearing in the interaction energy. Without any growth conditions on the
distances between consecutive jumps, the height variables #; will therefore
be constrained to remain close to 0. Thus, while jumps may become
abundant at high temperatures, as they do in the Ising model, jumps to
large values of |n,} remain unlikely, at arbitrary temperatures.

We now turn to a summary of our results for the discrete Gaussian
chain with o« =2. Our main result is that, for this model,

{(n;—n;)*> 2 consty -log i — j| (1.16)
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as |i— j| - oo, provided f is small enough, while
{n?y, < consty (1.17)

if B is large enough.
Our method of proof is as follows: Kjaer and Hilhorst® have shown
that if

g =g*(r)=("-1/4)" (1.18)

then the model is self-dual at =1, and
2 1 . .
(m=m)*por =5 5logli— (119)

as |i— j| — co. From this one can deduce (1.16) for g asin (1.18) and f < 1
with the help of correlation inequalities.!”’ The inequalities in ref. 4 also
permit us to extend (1.16) to coupling functions g(r), with the property
that

(k)< Ag*(k) (1.20)

for all B < A~"; see Section 4.

The proof of (1.17) for large values of § is more difficult. It is based
on an extension of the Peierls argument developed in ref. 1 for the 1/r?
Ising chain; see Section 3.

Inequalities (1.16) and (1.17) clearly demonstrate the existence of a
roughening transition in our model, as S is lowered. This is of some
interest in view of the role one-dimensional spin systems with 1/¢? inter-
action energy have played in the development of renormalization group
techniques.

Our result (1.17) has an interesting consequence: Consider the correla-
tion

Gyli— j)y=exp[—2n°{(n;—n;)*>4]
and define an exponent #(f) by
Gylr)~r' 1P (1.21)

Then, for g = g*, defined in (1.18), we have the relation

Bn(B)+ B~ 'n(B~)=2+p+p"" (1.22)
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which follows by duality, as noted in ref. 3. Now, suppose that (1.17) holds
for all > B,=1. Then

n(py=1 for f>f,
and (1.22) implies that, for § < f,,
n(B)=1+2/p (1:23)

which coincides with the value of the corresponding exponent in the
ordinary Gaussian model (n,e R, for all /) with inverse covariance deter-
mined by g*. The finiteness of f, follows from our results in Sections 3
and 4. It is an interesting open problem to prove or disprove that f,=1.

For g+ g*, we can deduce upper and lower bounds on #(f) from
(1.23) with the help of the correlation inequalities in ref. 4.

1.2. Connection between the Discrete Gaussian Chain and the
Quantum Mechanics of a Particle in a Periodic Potential,
Coupled to Quantum Mechanical 1/f Noise

We consider a quantum mechanical particle moving on the real line
under the influence of an external potential ¥ and coupled to one compo-
nent A, of a slowly varying gauge field. The position variable of the particle
is denoted by x, its momentum by p. The one-particle Hamiltonian H, is
given by

1 2
H, =50 [p—ed, ()] + V() (1.24)

where M is the mass of the particle, ¢ is its charge, and we shall require
henceforth that

Ay(x) =~ 4,(0) (1.25)

[We shall, in fact, replace 4,(x) in (1.24) by 4,(0).]1 For polynomially
bounded potentials V>0 and arbitrary 4,(0)eR, H, determines a
self-adjoint operator defined on a domain dense in #, := L*(R, dx).

The dynamics of the field A,, for e=0, is given by a free-field
Hamiltonian H, defined on some domain dense in the Fock space # of
states of the field oscillators by

Hy= [ d |k| a*(k) ak) (1.26)



Phase Transition in Discrete Gaussian Chain 461

where a* and a are standard creation and annihilation operators. The
operator H, is positive and self-adjoint, and its ground state is the usual
Fock vacuum ¢,. Expressed in terms of creation and annihilation
operators, A, is given by

(k)

2 \ki)i/z a*(k)e*lr—kx) y he} (1.27)

A,(x, 1) j dle =250
where & (the ultraviolet cutoff) is a real test function with $(0)= 1. If the

support of & is concentrated around k=0, then (1.25) holds. One easily
checks that (1.26) and (1.27) yield the formula

(A (0) @0, (e,,,, A D A(x) o)

1 iwt 2 €
=Wfdw(e —i)fdks(k) e

(1.28)

In particular,

CA4(0) g0, (™ 1~ 1) 4,(0) 9o) = [ dp(@) (e 1) (1.29)

where

1
dp(w)~ d;w for =0 (]7 distribution) (1.30)

We are interested in the dynamics of the coupled system with
Hamiltonian H given by

H:=H,+H, (1.31)
acting on the Hilbert space
H =HQF (1.32)

One of the simplest questions one can ask about this system is whether H
has a normalizable ground state in #. Let us assume that V has a
minimum at x=0, and let §y(x) denote the J-function at x=0. If one
exists, a ground state £2 of H can be obtained as the limit

Q= lim &() (1.33)

t— +o0

where
e (6, ® @)

PO = G, ® 9ol

(1.34)



462 Frohlich and Zegarlinski

where ||(-}] denotes the norm on #. Note that, although the norm of
3, ® @, is infinite, the norms of the vectors e ~“(§,® @,) are finite, for
t>0.

The states @(¢) can be studied with the help of the Feynman—-Kac
Sformula. In particular, for an arbitrary function F of x, we deduce from
(1.24), (1.26), and (1.31) that

(D(1), Fo(1))

=Zih o [ ()

X Xp [— j V(x(1)) dr} E (exp l:ie j 4,(t) 2(x) dr]) F(x(0))
(1.35)

where dW;_,,; is the Wiener measure on the space of Brownian paths
x(1), te [ —1t, t], with x(—¢)=x(¢) =0, the functional F is the imaginary-
time (Euclidean) vacuum expectation on configurations of the field 4,, and
Z; . is a “partition function.” Using the fact that E is Gaussian, we
conclude that E is completely determined by the “covariance matrix”
(1.28), and hence

E<exp [ie fitAl(r))'c(r) er

2

— exp {‘_ fz—j;f [x(t) = x()] g(t — ¢) dt do} (1.36)

where
g(0) = [ %™ dp(w)
~const-1+T2 as |t} - (1.37)
Thus, for
V(x) = A cos(2nx) (1.38)

the expectation (1.35) approaches that of the continuum limit of the dis-
crete Gaussian chain, with 1/7? interaction energy, as A-» co. Also, for
V(x) = A(x*—1)?, the expectation (1.35) approaches that of the continuum
limit of the Ising chain with 1/r? interaction energy, as A — o0.

In order to simplify our problems, we shall discretize the imaginary-
time variable 7: 7€ R is replaced by 7€ Z, and x(t = j) is denoted by n;, for
jeZ. Although our analytical methods are applicable to the models with 4
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finite, but large, we shall only study the limiting models, with 4 — co.
After these simplifications, we shall prove, in Sections 3 and 4, that the
model with V given by (1.36), 2 — oo, exhibits a depinning (roughening)
transition as B = e” is lowered. Physically, this means that the Hamiltonian
H given in (1.31), with V as in (1.38) (4 large enough), has a normalizable
ground state © localized near x =0, provided e? is large enough, while the
(generalized) ground state of H is extended for small values of e? [For
V(x)= A(x*—1)? the results in refs. 1 and2 suggest that the ground state
of H is doubly degenerate, and the symmetry x — —x spontanecously
broken, for large values of e, while it is unique for small e ]

It would be more interesting to study properties of charge transport,
as described by e ¥, for different values of 2 but our methods are inade-
quate for that task.

Remark. The quantum mechanical system described by (1.24)-
(1.32) is essentially equivalent to one with Hamiltonian
H=H,+ H,— const
where

A
Hp= —'zj—w+ V(x)+ ep(x)

with @(x) given by the rhs of (1.27) (at t=0), and H, as in (1.26), in the
approximation where ¢(x) is replaced by

d
0(0) + @; w) ©)-x

One might want to interpret ¢ as an electric potential acting on the
particle. In view of (1.29) and (1.30) one could say that ¢ describes
quantum mechanical 1/f noise.

For some background material on the problems described in this
section see ref. 8.

2. PRELIMINARY CONSIDERATIONS ON THE
LOW-TEMPERATURE PHASE

2.1. Description of the Problem

For LeN,let A=[—L,L1nZ and A°=7Z\A. Let 2=(Z)” and let
Q2 , be a subset of configurations n= (n,), ., defined by

Q, :={neQ:n;=0forie A} (2.1)

822/63/3-4-3
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We consider a system specified by a Hamiltonian function defined on Q ,
as follows:

1
Hn):=3 ¥ gli=j)n—mn) (22)

for a (positive) g(i—j)~|i—j|~? for |i—j| large. Under the above
assumptions we say that the system has zero (Ising) boundary conditions,
as compared to adiabatic (Dirichlet) boundary conditions defined by the
additional restriction

gli—j)=0 if i or |jl>L+1 (2.3)
For >0, a finite-volume Gibbs measure on £, is given by

Yrea, [eF(n)]

5o, (o) 24)

:uA,ﬂ(F) =

By simple arguments, the measure p,; defines a unique probability
measure on £2, denoted by the same symbol.

Our problem is to show that, for > ,, for some sufficiently large
0 < fo< o0, the sequence {y, ;} converges, as A # Z, and that the expec-
tation (2.4), for F an exponential function, is uniformly bounded in 4. The
solution of this problem is based on energy—entropy arguments similar to
ones in ref. 1 for the 1/r? Ising model.

2.2. Configurations and Contours

Let Qygng(A) consist of sequences ¢=(0,),., of spins such that
o;€{—1, +1}, and if ie A%, then o,= —1. Let Z* be the set of bonds of
the lattice Z. Identifying b e Z* with its midpoint, we have Z*~ 7 + 1/2.
We set Z%¥=27%n(A4u04°)* Each configuration e Qy,,(4) defines a
unique even subset I'=I(g) = Z% as follows:

bel  iff 6,0,,,=—1 (2.5)

and #1I(o) is even. Conversely, each even subset I'c Z% of spin flips
determines a unique configuration ¢ = ¢(/") € Q. (A).

For a subset y= I let b_(y) be the smallest and b, (y) the largest
bond belonging to y. The diameter d(y) of y is, by definition, equal to
b,(y)—b_(y)+1. Let I()=Z*[b_(y),b.(y)] and I, (y)={iel(y)*:
a;(y)= £1}.
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Each set of spin flips ' Z% (#1I even) can be partitioned into
primitive contours {y,,..,7, } satisfying the distance condition (D) of
ref. 1:

(Da) #vy,Is cven,

yum’))oc’zg lf ot;éoc’, U’ya:

(Db) dist(y, y,) Z M[min(d(y,), d(y,))1*? for a#o’ (2.6)
(Dc) Ifyis a subset of spin flips in y, satisfying
dist(y, v, \y) = 2Md(y)*>, then #yis odd (2.7)

The constant M >1 is assumed to be sufficiently large, but inde-
pendent of I' and A. Following ref. 2, we can and do assume that the
partition {y,} of I' given above is (unique and) maximal. (Then the
contours y, are called irreducible.)

For Ne N, we define the following characteristic functions on Z:

1 for |n]|=2N
(M5 Y= ! 2.8
1) { otherwise 28)
and
2 M) =1 (my) (29)

To each I" we associate a unique subset of Q ,, i.e., of n-configurations, on
a level Ne N, defined by the characteristic function

1 m =[] xein(n (2.10)

ied

We say that the sets I, and I',- are compatible, writing I, = I, iff

O—I(Fa)go-x(rz)’ ied (211)

We note thatif I', >=1I",,> --- =1, then
N
K ry(m) = [T 250m) 20 (2.12)
K=1

where X(K)(n) is given by (2.10) for I'=1, and we say that the family
{Ty s I, } 1s compatible.
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2.3. A Short Review of the 1/r? Ising Model

Theorem A of ref. 1 says that, for any primitive contour y in a maxi-
mal partition of a configuration I” of spin flips satisfying condition (D), for
some sufficiently large M > 1, the following lower bound is fulfilled:

HIsing(F) - HIsing(r\’y) g 2EHIsing(v) (213)

with a constant ¢ > 0 independent of I, y, and A.

Let {ixeZ+1/2:K=1,.,r} be an increasing finite sequence
specifying a set y of spin flips. The logarithmic length L(y) of y is defined
by

Liy):= ) {[n(ige,~ix)]+1} (2.14)

K=1,.,r
From ref. 1 one has the following estimations:

(a) An energy estimate: If M is sufficiently large, then there is a
constant C; >0, independent of the choice of primitive contours y, such
that

Hyging(7) 2 €, L(7) (2.15)

(b) Entropy estimate: There is a number C,>0, independent of A
and the choice of a point i€ A, such that, for any Re N,

# {y = primitive contour: ie I(y), L(y) < R} £ e“** (2.16)

The standard way, for bounded spin systems, to get an estimate on the
probability of a primitive contour y to be present involves using the Peierls
transform, defined as the map

*: {F(J) O-EQIsing(A)a ’\/ < F(O-)} - {F(G) O-e’g‘?lsing(‘/l)}

I'>I*:=I'\y 217)
Using the definition (2.17) we have (with H= Hy,),
P (y):Za:ycF(a)edﬂH(G)ZZF:yc:I"eiﬁH(r)
480 = TS SR S e PAD
Zf'ycfeiﬁH(r)
< : - _ (2.18)
Zf*:ycl‘e BH)
Writing the rhs of (2.18) in the form
—BH(I'*) , — B(H(I) — H(I'*))
ths(2.18) = =r2=r ¢ (2.19)

S re*ﬂH(F*)
Ty
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and using (2.13), we get the following Peierls estimate:
Py ply) < e Prism® (2.20)

Then, using (2.15) together with the entropy estimate (2.16), we conclude
that, for §> S, with ;>0 large enongh,

Piglo=1)= Y P,uy)se ™ (2.21)
y:ielly)

for some constant ¢ >0 independent of 4, ie A, and p.

3. PEIERLS ESTIMATE FOR THE DG MODEL AT LOW
TEMPERATURES

3.1. Basic Ideas

Consider first the problem of estimating the probability of the event
{neQ,: |n] =2} for some arbitrary ie A defined with the measure P g
Using the notation of Section 2.2, we have that

Hapine in| =2} EﬂA,ﬁX(&(”i)
= Z #A,ﬂ%g”l)(n) (3.1)

oIl =

The last sum can be represented using primitive contours {y, o,(y)= +1}
as follows:

> YomaprPmy= Y PU) (3.2)

yioi(y)=+1 I'y=r vioi(y)= +1

Our task 1s to establish a Peierls estimate, i.e., to prove an upper bound on
the probability P{%(y) of existence of a primitive contour . Since our con-
figuration space Q 4 1s noncompact, we use a modified Peierls transform in
order to reach that goal: For {1y < I}, we define a map

=i m =TT ) I 28 IT 2%m)  (33)

e ANI(y) iel_(y) iel+(y)

where

1 for |n|=1
(1) V= il =
Za(n) {0 otherwise (34)
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By virtue of the simple fact that

0< Y ¥t (3.3)

I': >y fixed

A

we get that

ZF:yCI":uA,ﬁXF: Zf:ycrlu'A,ﬁXF (3 6)
Zr;ycrﬂA,ﬁir Zl‘;ycfﬂA,ﬁXF(”A,BZI’/ﬂA,ﬂXF)

Py <

We see that in order to get our Peierls cstimate, we have to prove a
uniform (in I") bound from below on the factors (p, g7 /14 px ). For that
purpose, for a given I', y = I, we change variables in p, ;% , by passing
from the variables {7iesupp j,} to the variables {nesupp y,}, defined by

= for ie AN\, (y)
M+ (3.7)
fi for iel (y)

where s, = sign »n,.
Then we have that

H(#i;)= H(n;) - ' Z g(i—j)[z(ni—nj)si_l:l
Jed o

1
'2‘ Z g(i“j)[z(ni_”j)(si_sj)_(Si_sj)zj (3.8)

Ljeli(y)

Using this identity and defining u, by

Z#A,ﬂ(Xr'F) (3.9)

ur(k): HA,,B(XF)

we obtain from Jensen’s inequality the following lower bound:

Hagkry oo {/3 S glimi) pr2n— ) s 1)
Hapgkr ieli(y)
Jje AN (y)

1 .. )
£83 T s-Durn-n)s—s)= -5 (10
Ljediy)
Let us analyze the exponent on the rhs of (3.10): First we note that if i,
Jjel () ie., |n], [n;]| 22, then

2(";-“";)(8,-—%)—(S,-—SJ-)Z_Z,O (3.11)
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Next, for iel, (y) and jel (I) [o;(I)= —1], ie, |n]=2, |n,] <1, we
have that

2n—n)s;—1=2(n,| —s,m)— 121 (3.12)
Hence
Z g(l_j) ﬂl“(z(nt_ nj) Si— 1) é HIsing(F) - HIsing(F\y)
iel,
jeA\I+(V),rf§8")= -1 (3.13)

and, by virtue of (2.13),

) gUi—J) ur(2n;—n;) 8;— 1) Z CHyoe(y)  (3.14)

ieli(y)
je AN (y),00() = —1

for some constant ¢ > 0 independent of y (I, 4, and ). The last part of the
first sum in the exponent of the rhs of (3.10) is bounded from below as
follows:

Z g(i_j)ﬂr(z(ni_nj) s;—1)

ieli(y)
Jel(I'\y)
z~ Y gli—j)2Lpr(nl—2)+1] (3.15)
ieli(y)
jsh(Fy\v)

Here we use the fact that only configurations for which

(n;~—n;)s;=|n| —s,n,<0 (3.16)

iy =

are dangerous for us. But (3.16) can happen only if 5, = s5,. However, in this
case

] —sn;=(In;] =2) = (In)| =2) 2 —(In;| = 2) (3.17)
[since ie I, (y), so that |n,| —2=07]. Note that, under our conditions, one

can expect that u(|n;| —2) is smaller than u - |n,|. Combining (3.10)-(3.15),
we conclude the following Lemma.

Lemma 3.1. For any I containing some fixed contour 7,

”—A’ﬁxrgexp {ﬁ (cHIsing(y)~ Y gli—jpur(n —2)>} (3.18)
HapXr iel ()
jeli(I'\y)
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for some constant c e (0, ¢) independent of y (I, 4) and § [provided M > 1
in the definition of condition (D) is chosen sufficiently large]. |

Our Peierls estimate would be complete if we were able to prove a
bound

pr(inl =2)<C (3.19)

for some constant C >0 independent of je I, (I\y), y, I, 4, the constant
M, and f.

Let us remark that then, by choosing the constant M sufficiently large,
we may have an estimate from below of the exponent on the rhs of (3.18)

by ﬁ(c/2) HIsing(y)‘
Let us now start our proof of (3.19). First, we note the simple fact
that, for je 4, o,(1") = +1,
pr(ml —=2)={urLx(ln] £3)-(In] =2)1+ prLx(In] 24) 12}
+ wur(x(lnl 2 4)(In,| —4))
<2+ pr(x(ngl 2 4)(In| —4)) (3.20)

The second term on the rhs of (3.20) can be represented with the help of
contours on level N =2 compatible with I. We then have

(el 2 4)(Inyl —4))

= ) [ ) wr(ey? (gl — 4 ))] (3.21)

yioi()=+1Lrrxryer’

with {7’} ranging over primitive contours and the convention that if
{Ir':r>=I",y cI'"}=(, then the corresponding sum in square brackets
is zero.

Writing

Y wrP(In)—4) Y ) prrdinl —4)

' reEr\r-y Ir'':rer'.ycl
(3.22)

and inserting this identity into (3.21), we derive from (3.20) the inequality

il

ur(sn,-|~2)§z+z< 5 ur(x%>)ur,rr<|nj|44)> (3.23)

y \I':T'zl'y<rl"
Using this inequality, we observe that if we had a bound

wrr(|nl —4)y<C (3.24)
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for some constant C'>0 independent of I'"(y', A, f, M) and j",
o;(I'")= +1, then, by the arguments analogous to those in (3.17)-(3.18),
we would be able to complete our Peierls estimate for the primitive
contours y’. Having such an estimate for

Pr(y)= )y mr(x$)

Ir':rerycr’

(which is of the same form as for the corresponding Ising model) and using
(3.23)—(3.24) then, for sufficiently small temperatures !, we would obtain
the upper bound

pr(lnl=2) 22+ pur(x(inl 24)) - ' (3.25)

Since the rhs of (3.25) is independent of A, §, and, moreover, of I" and j
provided the temperature is sufficiently small, we are then able to complete
our Peierls estimate on the level below. We propose to iterate this proce-
dure. We will show that, at some sufficiently high level (depending on 4),
a bound similar to (3.24) is easy to prove. From that we will
simultaneously get a Peierls estimate at every level and a bound uniform
in A as well as in je A for u, 4ln,|. This will be carried out in the next
section. After generalizing our arguments in the proof of the bound on
tapln], we will get in Section 3.3 the exponential bound and restricted
analyticity properties.

3.2. The Peierls Estimate Completed

We start this section by proving two technical lemmas that will be
needed to prove the Peierls estimate on an arbitrary level.
For a set I" of spin flips in Qy,.(4), let

sy - F)
Py =tABsr ) 3.26
#r(F): 1 5(25) (3:26)

and for any compatible family {I,),.... Iy}, NeN, N=2, we define
recursively

N
MG(J) ,,,,, Tyn— 1(XSH)N)' )

Bty e Tu— 1(7r, )

(3.27)

fura(l o Dxn—1), ra(N)( ):=

If v is a primitive contour contained in 7, then we define

100 = 1 atnm)- 1 790 (3.28)

ie ANIL(y) el (y)
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with

122N —
)_{1 for |n]=22N—1 (329)

SN (17 ) —
n; X
7 0 otherwise

Lemma 3.1. For any compatible family {I ). ',y } and any
primitive contour y < I',(y),
~(N)
:u]—'u(l),..., I‘a(N,l)(xg"a(N))

(N)
Brugy,.. rz(Nfl)(xra(N))

> exp {ﬁ (chg(v) 2 Y gl g i 2N))}

ieli(y)
Jeli(Tym\y)

(3.30)

for some positive ¢ < ¢ independent of N, y, {Lyiyser Lawy ) 4, and . |}
Remark. The proof is similar to the one of Lemma 3.1.

Proof. Let us define

N—-1
Xraz(l) ,,,,, Ty = < ].—I XIE(K)) XF:!{NJ
K=1

summation variables {nesupp xr,, } in the numerator of the lhs of

(3.30) by requiring that

soes L 2(N)

A, =n, if ieA\J
N (y) 531)
A=n;—s; il i€l (y)
with s, = sign(n,).
Then
H(iy=Hn)— Y gli—)[2(n—n;)s,—1]
jednis
1 .
—5 ;( )g(i—J)[Z(n,-—nj)(s,.—sj)_(si_sj)z] (3.32)
Ljeli(y

Inserting this equation in the lhs of (3.30) and using Jensen’s inequality, we
get the foliowing lower bound:
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5(N)
/“‘me ..... Fa(Nfl)er(N)

(N)
lufm(l) ,,,,, Fm(N—l)qu(N)

> exp {g [2 Y gli—j) try,

ru(m(z(”f - nj) s;—1)

Jeoniy
b T B B s 5) 5 sPf e
Ljeli(y
Since, for i, jelI, (), y < Iy, we have that |n,, [n] = 2N, it follows that
2(n;—n)(s;—s;)—(5,—5,)> 20, i jel, (y) (3.34)
Moreover, if ;(1 )= —1, then |n,| £2N—1, and so, for |n,| Z 2N, ie,

2n;—n;)s,—1=2(n] —sn)—121 (3.35)
Hence
Z g(l_]) #1",(1) ,,,,, Fa(N)(z(ni_nj) Si— 1)
ieli(y)

Je AL ()i ol yy) = —1

= Hlsing(rm(N)) - Hlsing(ra(zv)\?)
gc—Hlsing(?) (336)

Note that this bound is independent of N and of the compatible family of
contours {1, L'y }- To bound the term

Z g(i—j) Hrpe. r(,(m(z(ni_ ”j) 5;—1)
ieli(y)
Jelo (Fym\y)

in the exponent on the rhs of (3.33), we proceed as follows.
Using the fact that for iel (y), jel, (I n\7), the expression
2(n;—n;) s; can be negative only if 5s,=s5;, we get the bound

/‘F,(U,..., FI(N)(2(ni~nj) Si) g _2#1"1(1),.‘., fm(N)(|nj| _2N) (3'37)
From (3.34), (3.36), and (3.37), and the bound
_ 1 .
(C—¢) Hyng()>5 Y. &li—)) (3.38)

ieli(y)
Je I (Tyn\y)
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which holds for any ¢—c¢>0 if M is sufficiently large, we conclude
inequality (3.30). |

In our proof of the Peierls estimate we shall need a bound on the
modulus of the rhs of (3.37) as N tends to co. This is provided by the next
lemma.

Lemma 3.2. Let F be an increasing, exponentially bounded
function on Z with

F(0)=0
and set
En(i0) = tiryyy..., ro(Fi = 2N)(04,( D)) + 1)) (3.39)
for any compatible sequence {I',),.... Iy }» N€N, and any iy 4. Then

lim En(ip) =0 (3.40)

N — o

Note that (3.40) is trivial unless o, (I yn) = +1, ie., [n,] 2 2N.
This implies, in particular, that for any AR, and any iye 4 with
O-io(F:x(N)): +1

Bm i €0 = 1) =0 (341)

and
]Vlimoo ,ul“,(l),m, ra(N](lni0| _ZN) =0 (3'42)

,,,,,

in n.

conclude, using the fact that the function
[T x(n,20)=y, (3.43)
ied

[with x(n;=0) the characteristic function of the set {n,20}] is non-
decreasing, that

(3.44)

Next, applying FKG inequalities to the conditional expectations with
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respect to {n;, o,(L )= —1},j€ 4, associated to the probability measure
on the rhs of (3.44), we find that

I’er(l) ..... Fz(N](XAVN . F(nio)) < Z;i,a,'(ra(jv))z +1 eﬁﬂH(n)F(nig - 2N)

, = / ~ BH
Kruy, F,W,(/(A_N) Zn,-,a,»(r,m)zﬂe )

(3.45)

where ' only extends over configurations n for which n,=2N if
0, (L yn)= —1 for all j.
Changing the summation variables n, — n,+ 2N, we get that

rhs(3.45) = [ > (exp{—BLHn+2N)— H(2N)]}) F(nio)}
e

><< 3 exp{~/3[l7(n+2N)~FI(2N)]}>l (3.46)
ol T

with
fI(n+2N):% Y gli—j)(n;+2N)?

je e
ied,oi(Iyn))= +1

1 o
+5 2 gli—j)n}
jed,oi(lym)= —1
ied,oi(lyw)= +1
1 .
+ 5 Z g(l—])(ni_nj)z (3.47)

i,jed
aillymy) = +1=0;(I'yn))
Then, for the numerator on the rhs of (3.46), we get, using F(0)=0, that
Y. exp{—B[Hn+2N)—HQ2N)]} F(ny)

neZ*:
gi(lgmy) = +1

<exp {—2Nﬁ[ S gliy —j)}}

jeAc

x Y {exp[—BH(n)1} F(n,) (348)
meZt:ied
The denominator in (3.46) satisfies the obvious lower bound
Y exp{—pLAMn+2N)-H2N)]} 21 (3.49)

meZt:
il ywy) = +1
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Using that A4 is a bounded set, we conclude from (3.44)-(3.45) and
(3.46)-(3.49) that

En(ig) e MeC, (3.50)

where E (i) has been defined in (3.39),

a=inf Y g(i—j)>0 (3.51)
zeAjeAC
and
sup< Y e FHE )> 1 (3.52)
ipe A njz0

Remark. Our proof shows that the rate of convergence in (3.40) is
independent of the family {I,),..., Iy} ne . Moreover, the lemma also
holds for adiabatic (Dirichlet) boundary conditions, as follows from the
estimates shown above.

For a primitive contour y we denote

ie, Pr..r.(?) is the probability, computed with the measure
K ryy.... Iyyy 10T the primitive contour y to appear in the configurations of
n on level (N+1). We now prove that Pr (N)(y) is bounded above
by the probability of the event that the primitive contour y appears
in a spin configuration of the corresponding Ising model, provided the
temperature is assumed to be sufficiently low. As one can expect from
our previous considerations, we shall simultaneously show that
Ly (703l = 2N)(0,(L ) + 1)) 1s uniformly bounded in i€ 4, 4, and
{sz(l)’ o> Lagmy s NeN.

We now show that, at sufficiently low temperatures, the Peierls
estimate can be completed on any level Ne N.

Proposition 3.1. There is a finite constant f,>0 such that, for
any > 5, the following bounds hold:

(P1) For any NeN, {4, Iy} and an arbitrary primitive
contour y:

[
Pro ron() S XD {—ﬁ : Hls,-ng(v)} (3.54)
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(P2) for any ie 4,

Bty Tl (1] = 2N) 305 (D) + 1)) S2(1 + €7 7) (3.55)

.....

for some constants a, ¢ >0 independent of Ne N, {I, 1y, Loy }> v [€ 4,
A, and B> f,.

Proof. The proof proceeds by induction. Take N = N(4) sufficiently
large, so that, for any compatible family {I,,),... I'yn}, We have (from
Lemma 3.2)

‘u’ra(l) fl(ﬁ)[(!n[i _2N) %(O-I(FO((]V))-{— 1)]§2 (3'56)

,,,,,

Take M >1 in condition (D) (Section 2.2) such that, for any primitive
contour y and a set I” of spin flips with y < I, we have that

C . .
EHIsing(’V)_3 Z g(l—J)éo (357)
/élil(vlgey)

(From considerations of ref. 1 it follows that this is possible.)

We now prove the induction step. Assuming that (P2) has been shown
on all levels = N, we prove (P1) and (P2) on level N — 1.

From considerations similar to those leading to (3.6), we have that,
for any compatible family {7y, Loy}

()
Zf: yc:I"urz(l),.“, Fa(N—l)Xr

A

= N) 5 (N) (N)
Zr:ycrﬂr,((l) ..... F,X(N_”XS* (.u['a(”,,.., I‘I(N,I)Zr /:ur,(l) ..... F,(N_x)xf )
(3.58)

Hence using Lemma 3.1 together with (3.55) and (3.57), we obtain the
upper bound

¢
Py (V) 2 €XP § =B 5 Hyging(7) (3.59)
2

This completes the proof of (P1) on level (N —1). To show (P2), we note
next that, for any ie A,

Ky rz(,v,l)((’ni| —2(N-1)) %(Gi(ro((N—l)) +1))
ran_p{Unsl =2N) x(In;| 2 2N)) (3.60)
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The second term on the rhs of (3.60) can be written as follows:

.....

= Z Z (,ul",,(l) ..... Fa(N_l)X(I{V))

By Faeny, (il = 2N) (3.61)

Now, using our assumption (3.55), we arrive at
Mraz(l) ,,,,, Fa(N—I)(|ni| - 2N) X(ln;‘l g 2N)
§3 Z Pru(l) ,,,,, Fa(N_l)('y) (362)
yioi(y)= +1

Using (3.59) and the entropy estimate (2.16) for primitive contours,
we conclude that, for f> f,, where f,>0 is chosen sufficiently large
(independently of A, {Iy,. Iyw—1)}, and N),

Z PI",(]),..., [‘u(N,l](’)))ée—ﬁa (363)

vioi(y) = +1

where the constant >0 depends only on ¢>0 [and on the constants C,
and C, from (1.13)-(1.17)]. From (3.60) and (3.61)-(3.63) we obtain (P2)
on level (N—1), ie,

e Ty (7] = 2N = D)0 (Do -y + 1)) S2(1 +77) (3.64)

We can and do assume that ,> 0 is such that
e P<1/3 (3.63)

Note that, by Lemma 3.1 and (3.58), we have that (3.59) and hence (3.63)
remain true for K< N and any {I",,,... I}, as long as

By P = 20K+ 1)) 3(0 AT i 1)) + 1)) =3 (3.66)

,,,,,

for any ie 4 [since (3.66) guarantees that we can use (3.57)].
Hence, in order to complete our induction, it suffices to note that we
have the following flow for the expectations of primary interest to us:

(N—K)

hr W)mn,w—2K)%<of(ra(,<))+1)>gz( ¥ eBﬁ"’) (3.67)

m=20

This follows by arguments identical to those used in (3.60)—(3.64). Now we
see that our choice (3.65) of 8, implies that the rhs of (3.67) is bounded
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above by 3, for any N and K. This shows that our induction is independent
of 4 if B> B> 0 is sufficiently large. This ends the proof by taking suitable
a>0. ]

3.3. Restricted Analyticity at Low Temperature
Suppose that f, is so large that Proposition 3.1 holds.

Proposition 3.2. For any f>f, there is some finite constant
h=h(B) >0 such that for any |h| <h

ype<e’ [1—e 2] (3.68)

for some constant C> 0 independent of i€ A4 and A.

Proof. We follow the idea of the proof of (P2) and use Lemma 3.2,
(3.41). For ie A and />0 let us note the simple fact that

.uA,/iehni <e'+ €2h/‘/1,ﬂ(€h(m—2)X(|ni| 22))

—dite Y (Z (uA,ﬁxw)ure“"f-z’) (3.69)

voi(y)=+1 \I"yc=rl

h(n;

Repeating the same arguments for p, " =2 and inserting the result on the

rhs of (3.69), we get that

HA,ﬁehniéeh‘f‘é’zh Z < Z ﬂA,ﬁX(rll}) e

yrroiy)=+1 \yyel

+et % [ Yo s

yiroiy)=+1 LIy =y
24 h(ni—4
X e Y ( Y urne’” >>] (3.70)
veoi(y2)=+1 Mauy<l

This bound can be rewritten as follows:

ﬂA,ﬁehm§€h[1+€M Z Po(?])]

yioi{y)= +1

+ e 2 <ﬂA,ﬂX(rll)eZh 2 > Hrl,rzeh(m“‘”)

y1iai{v) = +1 yaoi(y2)= +1 Iyl
(3.71)

with P,(7,) the probability for a primitive contour y, to appear, computed
in the measure u, ;= u,. By induction, using Lemma 3.2 with N=N(4)
chosen such that

Hr €O S e (3.72)

822/63/3-4-4



480 Frohlich and Zegarlinski

we get the bound

ﬂA,ﬁehm§eh {1+€2h z Po(71)

yi:0i(y1) = +1

T ﬂo(x(;f)[ezh y an)]

yiioi(y) = +1 y2:0i(y2) = +1
25 1 2h (2)
+ o te Yo mex®) (e > Y ounx¥
yizoi(y1) = +1 y2: 0i(y2) = +1 Iiya= I3
2h (N—1)
X € z Z :ufl ..... 11\,;2%1}\,;1
YN-120i(yN=1) = +1 I'N—1:yN 1= TNy
2h
xe > Pr. er(vN))} (3.73)
ynioi(yn) = +1

Since from Proposition 3.1 (P1) and the entropy estimate (2.16) we
conclude that

Y Prorcr)se ™ (3.74)

vk oi(yg) = +1

for a constant C > 0 independent of f, 4, ie A and {I'},.., Iy}, we see that
(3.73) implies the bound

N(A)

page™ e Y (eFe FCY” (3.75)
m=0
Hence, if
Ogh<ﬁ§%q (3.76)
then
pape e [1—e PO 20! (3.77)

This completes the proof. |

Proposition 3.1 suggests that the Gaussian behavior of moments of
4 p is violated, since we have only the following bound:

fap(ny) S (2 (A(B)),  reN (3.78)

with 0 < 4(f) < oo independent of 4, ie A4, and re N.
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4. ROUGHENING IN THE DG MODEL AT HIGH TEMPERATURE

In this section we study the high-temperature phase of the discrete
Gaussian chain with 1/r? interaction energy. We propose to prove the
bound (1.16), ie., that there exists some positive, finite constant S, such
that, for < f,,

{(n;—n;)* > = const, - log |i— j| (4.1)
as |i— j| — co. We shall also prove that
{(n;—~n,)*» 5 < consty-log [i— | (4.2)

as |i— j| — oo, for all §>0.

Inequality (4.1) shows that, at high temperatures, the interface
described by the DG chain is rough. In Section 3 we have shown that, at
sufficiently low temperatures and for zero boundary conditions,

{(n;—n,)* >4 4 < consty (4.3)
uniformly in i, j, and A=[—L, L]. This follows from our bounds on
(N3 pas ie,

(n}>p 4 = consty’ (4.4)

uniformly in 4.

In order to complete our proof of the existence of a phase transition,
we must prove (4.1) for the same choice of boundary conditions for which
(4.3) and (4.4) were proven, ie., for zero boundary conditions. Then (4.1)
and (4.3) imply that the constant f, is strictly positive and finite.

Our proof of inequality (4.1) (for zero boundary conditions) is based
on correlation inequalities, reviewed in Section 4.1, and a result due to
Kjaer and Hilhorst®; see Section 4.2.

4.1. Some Useful Inequalities

Consider the DG chain on the interval A=[~L,L] with
Hamiltonian

1 :
Hy=5 3 ng(ij)n (4.5)
2 ijed

where n,, i€ A, is a real random variable with a priori distribution

dp;(n;)=exp 4 cos(2nn;) dn; (4.6)
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for some 1€ (0, o]. The Gibbs state of the system confined to A is given
by

Fypi=(Fypuai=20, [ e OFm) 1] dpsn) (A7)

where the partition function Z, ; , is chosen such that {1}, =1.
Let f={(f(i));., and h=(h(i));c, be two sequences of complex
numbers. We define their scalar product (f, &) by setting

(i)=Y FD )

This equips C***! with a scalar product, hence making it a Hilbert space,
which is commonly denoted by /,(A). The matrix g(i, j) defines a quadratic
form g on I,(A4) by
(f: gh):= % JT0) g(is ) h(J)
i,jeA

We say that g, > g, iff

(/. &1z, g.f)  forall felya) (4.8)

We are now prepared to state some basic inequalities (of Ginibre type)
proven in ref. 4: Let f be an arbitrary element of /,(A4), and set n(f)=

(I’l, f) =Zj6/l n]f(j) Then
AN g = <P g, (4.9)

whenever g, = g,>0 and 4,2 4,, ie., {|n(f)*), ; is monotone decreasing
in g and A. As corrollaries of (4.9) we have that

<(”i_nj)2>g§ <(ni—nj)2>g,0
=(g NG+ (g N =2g VG (4.10)
(nty,< (g7 ") i) (4.11)

where {(-)>,=lim; . o, {(-)),, is the expectation of the DG chain with
interactions g(7, j), g~' is the inverse matrix of g>0, and {(-)),, is the
Gaussian expectation with mean 0 and covariance g !, as is seen from
{4.7). Furthermore, we have that

{(n;—n,)* ) g, and {n} ) 4, , are monotone decreasingin f20  (4.12)

for all 0 <A < o0, whenever g > 0.
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4.2. Consequences of the Results of Kjaer and Hilhorst®

By combining the so-called sine-Gordon transformation (see ref. 9 and
references given there) with a transformation due to Cardy,® Kjaer and
Hilhorst® have been able to analyze a special DG chain, at a special value
of the inverse temperature f, explicitly. They choose periodic boundary
conditions n, ,,;=n_,_,,; and pin n, ., at height 0, ie, n; ., =0.
Furthermore, they choose a self-dual interaction, g(i, j) := gF(i— j), given
by

gz(j>:=[ i sin( x )]
2L 42 2L+2
x [sin (”;2:?) sin <”2(£13>] (4.13)

for | jl =1,.., 2L~ 1. By using a Fourier transform, it is not hard to show
that g¥ >0, as a quadratic form, see (4.8); and from (4.13) one has that

grN-g*)=0*-3"" Jjez (4.14)

as L — 0.
It is then shown in ref. 3 that

(= n)>ge= lim {(n—n)

:%ﬂzlogii—jl (4.15)
as |i— j| — oo.

Equation (4.15) follows quite easily from the self-duality of the model
with g= gF and A= co; see ref. 3.

The function g} determines a positive-definite matrix &, = (£,(i, j))
such that, for an arbitrary sequence f e /,(A), with f(L+1)=0,

> gHi— N 1) —fO)?
—L=ij=<L+1 S(L+1)=0

= J0) 8006 J) f1)) (4.16)

—L<ij

A

Let g, be any matrix with the property that

O<g, =48, (4.17)
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for some finite constant 4. Let 0 <f < A7, so that 0 < fg, < &,. Then it
follows from inequality (4.9) that

<(ni_nj)2>ngZ <(ni-—nj)2>§L (4.18)

foral 0< <AL
Next, we observe that any function g on Z determines a quadratic
form g, on [,(A4) by setting

Y SO e NfG)= Y gli—=NIfH=FDF (419
—L<ij=<L ijeZ
with f(i)=0, for all ie Z\A.
The point is now to choose a function g with the properties that
0 < g(j)~const-|j| =% as | j| » oo, that the estimates proven in Section 3
are valid for the DG chain with equilibrium state {(-))g,,, g, as in (4.19),
for § and L large enough, and that

g < Ag, {4.20)

for some A4 < o independent of L, for L large enough. Then it follows from
(4.18) and (4.15) that, for 0< <A,

<(ni-nj)2>ﬁgL g <(ni - nj)2>gz
1
=5 log i~ @.21)

for L large enough, which proves (4.1).
It also follows from (4.10) that

{(n;— nj)2 >5g,_ <{(n;— nj)2 >ﬁgL,),:0

<const-B'log (Ji—ji+ 1) (4.22)

This upper bound shows that the lower bound (4.21) is poor, for very small
B, since the rhs of (4.21) is independent of f. This unsatisfactory state of
affairs can be improved if one is willing to use the rather involved tech-
niques developed in ref. 9. As shown in ref. 3, the DG chain at inverse tem-
perature f is equivalent to a classical lattice gas of charges g € Z interacting
through a logarithmic potential (as L —oo), at inverse temperature
B*:=p~! This lattice gas can be reconstructed from a two-dimensional
lattice Coulomb gas of charges by “dimensional reduction,” i.e., by
confining the charges in the fwo-dimensional system to a line of sites
{j=(", j®)eZ? j2=0}. For f* large enough, this system can be studied
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with the help of the techniques developed in ref. 9. These techniques prove
that, for sufficiently large f*, i.e., sufficiently small j,

{(n;=n;)* >4, Z const’ - f " log |i— J| (4.23)

for a suitable choice of g and L large enough. [In particular, thanks to
inequality (4.9), the function g used in Section 3 and zero boundary condi-
tions are compatible with the requirements of ref. 9.]

We note that the lower bound (4.23) has the same structure as the
upper bound (4.22) (same f dependence, for small ), which is nice.
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